cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 136 results. Next

A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 0 1 1
  0 0 1 1 1
  0 0 0 1 1 1
  0 1 0 1 1 1 1
  0 0 1 0 1 1 1 1
  0 0 1 1 1 1 1 1 1
  0 0 0 1 1 1 1 1 1 1
  0 0 0 1 1 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 1 1 1 1
  0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 1 1 1 1 1
  0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1
  0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1
  0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1
Row n = 12 counts the following partitions:
  (66)
  (6222)
  (62211)
  (222222) (621111)
  (2222211) (6111111)
  (22221111)
  (222111111)
  (2211111111)
  (21111111111)
  (111111111111)
		

Crossrefs

Row sums are A064986.
Cf. A008284.
Reciprocal factorial sum: A325618, A325619, A325620, A325622.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}]

Formula

T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)).

A275732 One-based positions of 1-digits in the factorial base representation of n are converted to primes with those indices, then multiplied together.

Original entry on oeis.org

1, 2, 3, 6, 1, 2, 5, 10, 15, 30, 5, 10, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, 2, 7, 14, 21, 42, 7, 14, 35, 70, 105, 210, 35, 70, 7, 14, 21, 42, 7, 14, 7, 14, 21, 42, 7, 14, 1, 2, 3, 6, 1, 2, 5, 10, 15, 30, 5, 10, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, 2, 5, 10, 15, 30, 5, 10, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, 2, 1, 2, 3, 6, 1, 2, 5, 10, 15, 30
Offset: 0

Views

Author

Antti Karttunen, Aug 08 2016

Keywords

Comments

All terms are squarefree (A005117), and each squarefree number occurs an infinitely many times.

Examples

			22 has factorial base representation "320" (= A007623(22)), which does not contain any "1". Thus a(22) = 1, as the empty product is 1.
35 has factorial base representation "1121" (= A007623(35)). 1's occur in the following positions, when counted from right, starting with 1: 1, 3 and 4. Thus a(35) = prime(1)*prime(3)*prime(4) = 2*5*7 = 70.
		

Crossrefs

Cf. A255411 (indices of ones).
Can be used to compute A275733 and A275734.
Cf. also to A275736.

Programs

  • Mathematica
    nn = 105; m = 1; While[Factorial@ m < nn, m++]; m; Map[Times @@ Map[Prime, Flatten@ Position[#, 1]] &@ Reverse@ IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, Range[0, nn]] (* Michael De Vlieger, Aug 11 2016, Version 10.2 *)
  • Python
    from operator import mul
    from sympy import prime
    def a007623(n, p=2): return n if n
  • Scheme
    ;; Recursive definition using memoizing definec-macro:
    (definec (A275732 n) (cond ((zero? (A257261 n)) 1) (else (* (A000040 (A257261 n)) (A275732 (A275730bi n (- (A257261 n) 1)))))))
    (define (A275732 n) (let loop ((z 1) (n n)) (let ((y (A257261 n))) (cond ((zero? y) z) (else (loop (* z (A000040 y)) (A275730bi n (- y 1))))))))
    ;; Code for A275730bi given in A275730.
    

Formula

If A257261(n) = 0, then a(n) = 1, otherwise a(n) = A000040(A257261(n)) * a(A275730(n, A257261(n)-1)). [Here A275730(n,p) is a bivariate function that "clears" the digit at zero-based position p in the factorial base representation of n].
Other identities and observations. For all n >= 0:
a(A007489(n)) = A002110(n).
a(A255411(n)) = 1.
A001221(a(n)) = A001222(a(n)) = A257511(n).
A048675(a(n)) = A275736(n).

A275733 a(0) = 1; for n >= 1, a(n) = A275732(n) * A003961(a(A257684(n))).

Original entry on oeis.org

1, 2, 3, 6, 3, 6, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 5, 10, 15, 30, 15, 30, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 7, 14, 21, 42, 21, 42, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 35, 70, 105, 210, 105, 210, 7, 14, 21, 42, 21, 42
Offset: 0

Views

Author

Antti Karttunen, Aug 08 2016

Keywords

Comments

a(n) = product of primes whose indices are positions of nonzero-digits in factorial base representation of n (see A007623). Here positions are one-based, so that the least significant digit is the position 1, the next least significant the position 2, etc.

Examples

			For n=19, A007623(19) = 301, thus a(19) = prime(3)*prime(1) = 5*2 = 10.
For n=52, A007623(52) = 2020, thus a(52) = prime(2)*prime(4) = 3*7 = 21.
		

Crossrefs

Subsequence of A005117.
Cf. A275727.
Cf. also A275725, A275734, A275735 for other such prime factorization encodings of A060117/A060118-related polynomials.

Formula

a(0) = 1; for n >= 1, a(n) = A275732(n) * A003961(a(A257684(n))).
Other identities and observations. For all n >= 0:
a(A007489(n)) = A002110(n).
A001221(a(n)) = A001222(a(n)) = A060130(n).
A048675(a(n)) = A275727(n).
A061395(a(n)) = A084558(n).

A219664 Repeating part of A220664: First differences of the numbers given as concatenation of permutations of (1,...,m) for sufficiently large m.

Original entry on oeis.org

9, 81, 18, 81, 9, 702, 9, 171, 27, 72, 18, 693, 18, 72, 27, 171, 9, 702, 9, 81, 18, 81, 9, 5913, 9, 81, 18, 81, 9, 1602, 9, 261, 36, 63, 27, 594, 18, 162, 36, 162, 18, 603, 9, 171, 27, 72, 18, 5814, 9, 171, 27, 72, 18, 603, 9, 261, 36, 63, 27, 1584, 27, 63, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2012

Keywords

Comments

First 5!-1 terms are identical to A107346, and the 9!-1 terms are identical to A209280. (Updated by M. F. Hasler, Jan 12 2013, Mar 03 2013)
Because of the self-similar nature of A220664, this sequence can be also constructed by picking appropriate terms from there with the auxiliary sequence A220655, cf. formula.
Similarly, differences between successive permutations of {1,2,...,k} in lexicographic order interpreted as decimal numbers, for any k=2..9, produce the first (k!)-1 terms of this sequence. But for k=10 the result is ill-defined, so we can consider the sequence finite, well-defined only for n=1..362879. [See however the following comment. - Editor's note]
In sequence A030299 it is clearly defined how it extends beyond index n = 1!+2!+...+9! = A007489(9), so the sequence A220664 of its first differences is well-defined up to infinity. (The "result" mentioned above is ill defined because the meaning of "interpreted" is not clear.) But the preceding comment is misleading by speaking of "self similar nature", and the sequence definition as "repeating part" is also misleading: If the sequence is defined to be of finite length 9!-1 (thus equal to A209280), then it is indeed infinitely often repeated as a subsequence (of consecutive terms) in A220664 (even when the latter was defined using concatenation for permutations of more than 9 elements, but then not as differences of the terms following 12345678910 where it was expected, but, e.g., as differences of the terms following 10123456789, etc.).
Since A030299 has been defined through a ("simpler") sum rather than concatenation, the nice mathematical properties of A220664, and even more this sequence A219664, persist beyond n=9!. - M. F. Hasler, Jan 12 2013

Examples

			The first four permutations of nine elements at A030299(A003422(9)..A003422(9)+3) (the terms A030299(46234..46237)) are: 123456789, 123456798, 123456879, 123456897. As 123456897-123456879 = 18, thus we have a(3) = 18.
We could compute the same value from any smaller set of permutations of at least three elements, for example, from the five element permutations used in A107346. In that case, the permutations A030299(A003422(5)..A003422(5)+3) (the terms A030299(34..37)) are: 12345, 12354, 12435, 12453, ... and we get the same result, a(3) = 12453-12435 = 18.
		

Crossrefs

Programs

  • PARI
    A219664(n)=for(k=2,n+1, k!>n || next; k=vecsort( vector( (#k=vector(k,j,10^j)~\10)!,i,numtoperm(#k,i)*k )); return(k[n+1]-k[n]))  \\ (It is of course more efficient to calculate a whole vector of the first k!-1 terms. Also, for n>9!, this might yield incorrect terms.) - M. F. Hasler, Jan 12 2013
  • Scheme
    (define (A219664 n) (A220664 (A220655 n)))
    

Formula

a(n) = A220664(A220655(n)).
a(n) = 9*A217626(n).

A231716 Numbers with restricted residue set factorial base representation: numbers n which can be formed as a sum n = du*u! + ... + d2*2! + d1*1!, where each di is in range 1..i and gcd(di,i+1)=1.

Original entry on oeis.org

1, 3, 5, 9, 11, 21, 23, 33, 35, 45, 47, 57, 59, 69, 71, 81, 83, 93, 95, 105, 107, 117, 119, 153, 155, 165, 167, 177, 179, 189, 191, 201, 203, 213, 215, 225, 227, 237, 239, 633, 635, 645, 647, 657, 659, 669, 671, 681, 683, 693, 695, 705, 707, 717, 719, 873, 875
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2013

Keywords

Comments

A001088(n+1) gives the number of terms x in sequence for which A084558(x)=n.
Because totatives (the reduced residue set) of each natural number k form a multiplicative group of integers modulo same k, it means that taking e.g. inverses of each digit modulo same k or multiplying them (again modulo k) by some member of that set keeps the set closed, and thus applying these operations to each digit modulo i+1 (2 for the least significant digit in factorial base, 3 for the next, and so on) yield only digits allowed in this sequence, and thus they induce various permutations of this sequence. These can be further "normalized" to be permutations of natural numbers with a suitable ranking function, which is to be submitted later.

Examples

			This can be viewed as an irregular table, where row n has A001088(n+1) elements, starts from position A231721(n) and ends at position A231722(n+1):
1;
3, 5;
9, 11, 21, 23;
33, 35, 45, 47, 57, 59, 69, 71, 81, 83, 93, 95, 105, 107, 117, 119;
...
		

Crossrefs

Positions of ones in A231715.
The first term of each row: A007489(n) = a(A231721(n)).
The last term of each row: A033312(n+1) = a(A231722(n+1)).
Subset of A227157.

A289945 a(n) = Sum_{k=1..n} k!^4.

Original entry on oeis.org

1, 17, 1313, 333089, 207693089, 268946253089, 645510228813089, 2643553803594573089, 17342764866576345933089, 173418555892594089945933089, 2538940579958951120707545933089, 52646414799433780559063261145933089
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Comments

The only prime in this sequence is a(2) = 17 since a(n) is divisible by 13 for n >= 12 and there are no other primes with n < 12.

Crossrefs

Cf. A007489 (k!), A104344 (k!^2), A289946 (k!^6).

Programs

  • Mathematica
    Table[Sum[k!^4, {k, n}], {n, 12}]
    Accumulate[(Range[15]!)^4] (* Harvey P. Dale, Jul 12 2019 *)
  • PARI
    a(n) = sum(k=1, n, k!^4); \\ Michel Marcus, Jul 16 2017

A289946 a(n) = Sum_{k=1..n} k!^6.

Original entry on oeis.org

1, 65, 46721, 191149697, 2986175149697, 139317055679149697, 16390300280131775149697, 4296598745804900241599149697, 2283384320190476620685217983149697, 2283382306976051006261597069217983149697
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Crossrefs

Cf. A007489 (k!), A104344 (k!^2), A289945 (k!^4).
Cf. A289947 (indices giving primes).

Programs

  • Mathematica
    Table[Sum[k!^6, {k, n}], {n, 10}]
    Accumulate[(Range[10]!)^6] (* Harvey P. Dale, May 14 2023 *)
  • PARI
    a(n) = sum(k=1, n, k!^6); \\ Michel Marcus, Jul 16 2017

A336496 Products of superfactorials (A000178).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 34560, 36864, 41472, 49152, 55296
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

First differs from A317804 in having 34560, which is the first term with more than two distinct prime factors.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   48: {1,1,1,1,2}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

A001013 is the version for factorials, with complement A093373.
A181818 is the version for superprimorials, with complement A336426.
A336497 is the complement.
A000178 lists superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A049711 is the minimum prime multiplicity in A000178.
A174605 is the maximum prime multiplicity in A000178.
A303279 counts prime factors of superfactorials.
A317829 counts factorizations of superprimorials.
A322583 counts factorizations into factorials.
A325509 counts factorizations of factorials into factorials.

Programs

  • Mathematica
    supfac[n_]:=Product[k!,{k,n}];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]

A337074 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities), starting with n!.

Original entry on oeis.org

1, 1, 2, 0, 28, 0, 768, 0, 0, 0, 42155360, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 16 2020

Keywords

Comments

Support appears to be {0, 1, 2, 4, 6, 10}.

Examples

			The a(4) = 28 chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/8/2/1   24/12/4/2/1
      24/3   24/4/1   24/8/4/1
      24/4   24/4/2   24/8/4/2
      24/8   24/8/1   24/12/2/1
      24/12  24/8/2   24/12/3/1
             24/8/4   24/12/4/1
             24/12/1  24/12/4/2
             24/12/2
             24/12/3
             24/12/4
		

Crossrefs

A336867 is the complement of the support.
A336868 is the characteristic function (image under A057427).
A336942 is half the version for superprimorials (n > 1).
A337071 does not require distinct prime multiplicities.
A337104 is the case of chains ending with 1.
A000005 counts divisors.
A000142 lists factorial numbers.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336571 counts chains of divisors 1 < d < n using A130091.

Programs

  • Mathematica
    chnsc[n_]:=If[!UnsameQ@@Last/@FactorInteger[n],{},If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]]];
    Table[Length[chnsc[n!]],{n,0,6}]

Formula

a(n) = 2*A337104(n) = 2*A336423(n!) for n > 1.

A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.

Original entry on oeis.org

2, 9, 375, 15625
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      9: {2,2}
    375: {2,3,3,3}
  15625: {3,3,3,3,3,3}
		

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624.

Programs

  • Mathematica
    Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]

Formula

Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.
Previous Showing 31-40 of 136 results. Next