A084558 a(0) = 0; for n >= 1: a(n) = largest m such that n >= m!.
0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5
Offset: 0
Examples
a(4) = 2 because 2! <= 4 < 3!.
References
- F. Smarandache, "f-Inferior and f-Superior Functions - Generalization of Floor Functions", Arizona State University, Special Collections.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Yi Yuan and Zhang Wenpeng, On the Mean Value of the Analogue of Smarandache Function, Smarandache Notions J., Vol. 15.
Crossrefs
Programs
-
Haskell
a084558 n = a090529 (n + 1) - 1 -- Reinhard Zumkeller, Jan 05 2014
-
Maple
0, seq(m$(m*m!),m=1..5); # Robert Israel, Apr 27 2015
-
Mathematica
Table[m = 1; While[m! <= n, m++]; m - 1, {n, 0, 104}] (* Jayanta Basu, May 24 2013 *) Table[Floor[Last[Reduce[x! == n && x > 0, x]]], {n, 120}] (* Eric W. Weisstein, Sep 13 2024 *)
-
PARI
a(n)={my(m=0);while(n\=m++,);m-1} \\ R. J. Cano, Apr 09 2018
-
Python
def A084558(n): i=1 while n: i+=1; n//=i return(i-1) print(list(map(A084558,range(101)))) # Natalia L. Skirrow, May 28 2023
Formula
From Hieronymus Fischer, Apr 30 2012: (Start)
a(n!) = a((n-1)!)+1, for n>1.
G.f.: 1/(1-x)*Sum_{k>=1} x^(k!).
The explicit first terms of the g.f. are: (x+x^2+x^6+x^24+x^120+x^720...)/(1-x).
(End)
Other identities:
For all n >= 0, a(n) = A090529(n+1) - 1. - Reinhard Zumkeller, Jan 05 2014
a(n) ~ log(n^2/(2*Pi)) / (2*LambertW(log(n^2/(2*Pi))/(2*exp(1)))) - 1/2. - Vaclav Kotesovec, Aug 22 2025
Extensions
Name clarified by Antti Karttunen, Apr 27 2015
Comments