cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 103 results. Next

A269409 T(n,k)=Number of length-n 0..k arrays with no repeated value greater than or equal to the previous repeated value.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 9, 6, 25, 60, 63, 12, 7, 36, 120, 222, 159, 16, 8, 49, 210, 570, 804, 394, 20, 9, 64, 336, 1215, 2670, 2872, 957, 25, 10, 81, 504, 2289, 6960, 12380, 10132, 2292, 30, 11, 100, 720, 3948, 15477, 39560, 56890, 35383, 5419, 36, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 25 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
..9....63....222.....570.....1215......2289......3948.......6372.......9765
.12...159....804....2670.....6960.....15477.....30744......56124......95940
.16...394...2872...12380....39560....104006....238224.....492312.....939360
.20...957..10132...56890...223320....695135...1837752....4302612....9168780
.25..2292..35383..259445..1253190...4623815..14121282...37478718...89241015
.30..5419.122480.1175355..6995660..30625210.108123624..325487010..866361210
.36.12678.420752.5293671.38870136.202067047.825227424.2819002698.8390905692

Examples

			Some solutions for n=6 k=4
..3. .2. .1. .0. .1. .3. .1. .0. .0. .1. .0. .2. .4. .3. .0. .4
..3. .0. .0. .3. .3. .4. .4. .2. .3. .4. .4. .4. .2. .4. .4. .4
..1. .3. .1. .0. .3. .4. .2. .4. .1. .1. .0. .2. .0. .2. .2. .2
..0. .4. .4. .3. .0. .0. .1. .0. .2. .4. .2. .4. .2. .4. .1. .4
..2. .0. .0. .2. .3. .0. .2. .4. .3. .2. .0. .0. .4. .1. .1. .2
..1. .0. .1. .4. .4. .4. .3. .4. .4. .3. .2. .0. .0. .3. .2. .4
		

Crossrefs

Column 1 is A002620(n+2).
Column 2 is A267960.
Column 3 is A267928.
Diagonal is A268205.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
k=2: a(n) = 6*a(n-1) -9*a(n-2) -8*a(n-3) +24*a(n-4) -16*a(n-6)
k=3: [order 8]
k=4: [order 10]
k=5: [order 12]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + (7/2)*n^2 + (1/2)*n
n=5: a(n) = n^5 + 5*n^4 + (11/2)*n^3 + n^2 - (1/2)*n
n=6: a(n) = n^6 + 6*n^5 + 8*n^4 + (5/3)*n^3 - n^2 + (1/3)*n
n=7: a(n) = n^7 + 7*n^6 + 11*n^5 + (8/3)*n^4 - (11/6)*n^3 + (1/3)*n^2 - (1/6)*n

A055522 Largest area of a Pythagorean triangle with n as length of one of the three sides (in fact as a leg).

Original entry on oeis.org

6, 6, 30, 24, 84, 60, 180, 120, 330, 210, 546, 336, 840, 504, 1224, 720, 1710, 990, 2310, 1320, 3036, 1716, 3900, 2184, 4914, 2730, 6090, 3360, 7440, 4080, 8976, 4896, 10710, 5814, 12654, 6840, 14820, 7980, 17220, 9240, 19866, 10626, 22770, 12144, 25944
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Maple
    seq(piecewise(n mod 2 = 0,n*(n^2-4)/8,n*(n^2-1)/4),n=3..60); # C. Ronaldo
  • Mathematica
    Table[n*(3*(n^2 - 2) - (n^2 + 2)*(-1)^n)/16, {n, 3, 50}] (* Wesley Ivan Hurt, Apr 27 2017 *)

Formula

a(n) = n*A055523(n)/2.
a(2k) = k*(k+1)*(k-1), a(2k+1) = k*(k+1)*(2k+1).
O.g.f.: 6*x^3*(x+1+x^2)/((1-x)^4*(1+x)^4). a(2k+1)=A055112(k). a(2k)=A007531(k+1). [R. J. Mathar, Aug 06 2008]
a(n) = n*(3*(n^2-2)-(n^2+2)*(-1)^n)/16. - Luce ETIENNE, Jul 17 2015

A093074 Greatest prime factor of n and its direct neighbors.

Original entry on oeis.org

2, 3, 3, 5, 5, 7, 7, 7, 5, 11, 11, 13, 13, 13, 7, 17, 17, 19, 19, 19, 11, 23, 23, 23, 13, 13, 13, 29, 29, 31, 31, 31, 17, 17, 17, 37, 37, 37, 19, 41, 41, 43, 43, 43, 23, 47, 47, 47, 7, 17, 17, 53, 53, 53, 11, 19, 29, 59, 59, 61, 61, 61, 31, 13, 13, 67, 67, 67, 23, 71, 71, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2004

Keywords

Comments

a(n) = A006530(n + A093075(n));
a(n) = max{A006530(n-1), A006530(n), A006530(n+1)}, n>1;
a(n) = A006530(A007531(n+1)), n>1;
for all primes p>2: a(p)=a(p-1)=p and if p is not the lesser member of a twin prime pair, then also a(p+1)=p;
(n,n+2) is a twin prime pair iff a(n-1)=a(n)=n and a(n+1)=a(n+2)=a(n+3)=n+2.

Crossrefs

Programs

  • Haskell
    a093074 1 = 2
    a093074 n = maximum $ map a006530 [n-1..n+1]
    -- Reinhard Zumkeller, Jul 04 2012
    
  • PARI
    a(n)=my(p=precprime(n+1));if(p>n-2,p,vecmax(apply(n->vecmax(factor(n)[,1]),[n-1,n,n+1]))) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) > 47 if n > 212381. - Charles R Greathouse IV, Feb 19 2013

A128961 a(n) = (n^3 - n)*3^n.

Original entry on oeis.org

0, 54, 648, 4860, 29160, 153090, 734832, 3306744, 14171760, 58458510, 233834040, 911952756, 3482001432, 13057505370, 48212327520, 175630621680, 632270238048, 2252462723046, 7949868434280, 27824539519980, 96653663595720, 333455139405234, 1143274763675088
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*3^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[0,54,648,4860]; [n le 4 select I[n] else 12*Self(n-1)-54*Self(n-2)+108*Self(n-3)-81*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    LinearRecurrence[{12, -54, 108, -81}, {0, 54, 648, 4860}, 30] (* or *) CoefficientList[Series[54 x/(1 - 3 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)

Formula

G.f.: 54*x^2/(1-3*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 12*a(n-1) - 54*a(n-2) + 108*a(n-3) - 81*a(n-4). - Vincenzo Librandi, Feb 12 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000244(n).
Sum_{n>=2} 1/a(n) = (2/3)*log(3/2) - 1/4.
Sum_{n>=2} (-1)^n/a(n) = (8/3)*log(4/3) - 3/4. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A128962 a(n) = (n^3 - n)*4^n.

Original entry on oeis.org

0, 96, 1536, 15360, 122880, 860160, 5505024, 33030144, 188743680, 1038090240, 5536481280, 28789702656, 146565758976, 732828794880, 3607772528640, 17523466567680, 84112639524864, 399535037743104, 1880164883496960, 8774102789652480, 40637949762600960
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*4^n: n in [1..20]]; // Vincenzo Librandi, Feb 09 2013
  • Mathematica
    CoefficientList[Series[96 x / (1-4 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 09 2013 *)
    Table[(n^3-n)4^n,{n,20}] (* or *) LinearRecurrence[{16,-96,256,-256},{0,96,1536,15360},20] (* Harvey P. Dale, Dec 31 2018 *)

Formula

G.f.: 96*x^2/(1-4*x)^4. - Vincenzo Librandi, Feb 09 2013
a(n) = 16*a(n-1) - 96*a(n-2) + 256*a(n-3) - 256*a(n-4). - Vincenzo Librandi, Feb 09 2013
a(n) = 96*A038846(n-2) for n>1. - Bruno Berselli, Feb 10 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000302(n).
Sum_{n>=2} 1/a(n) = (9/8)*log(4/3) - 5/16.
Sum_{n>=2} (-1)^n/a(n) = (25/8)*log(5/4) - 11/16. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A128963 a(n) = (n^3 - n)*5^n.

Original entry on oeis.org

0, 150, 3000, 37500, 375000, 3281250, 26250000, 196875000, 1406250000, 9667968750, 64453125000, 418945312500, 2666015625000, 16662597656250, 102539062500000, 622558593750000, 3735351562500000, 22178649902343750, 130462646484375000, 761032104492187500
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*5^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    Table[(n^3-n)5^n,{n,20}] (* or *) LinearRecurrence[{20,-150,500,-625},{0,150,3000,37500},20] (* Harvey P. Dale, Jul 22 2012 *)
    CoefficientList[Series[150 x/(1 - 5 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)

Formula

a(1)=0, a(2)=150, a(3)=3000, a(4)=37500, a(n)=20*a(n-1)-150*a(n-2)+ 500*a(n-3)- 625*a(n-4). - Harvey P. Dale, Jul 22 2012
G.f.: 150*x^2/(1 - 5*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 150*A081143(n+1). - Bruno Berselli, Feb 12 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000351(n).
Sum_{n>=2} 1/a(n) = (8/5)*log(5/4) - 7/20.
Sum_{n>=2} (-1)^n/a(n) = (18/5)*log(6/5) - 13/20. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A128965 a(n) = (n^3 - n)*7^n.

Original entry on oeis.org

0, 294, 8232, 144060, 2016840, 24706290, 276710448, 2905459704, 29054597040, 279650496510, 2610071300760, 23751648836916, 211605598728888, 1851548988877770, 15951806673408480, 135590356723972080, 1138958996481365472, 9467596658251350486, 77968443067952298120
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 - n)*7^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    LinearRecurrence[{28, -294, 1372, -2401}, {0, 294, 8232, 144060}, 30] (* Vincenzo Librandi, Feb 11 2013 *)
    Table[(n^3-n)7^n,{n,20}] (* Harvey P. Dale, May 14 2020 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 294x^2/(1-7x)^4.
a(n) = 294*A140107(n-2). (End)
a(n) = 28*a(n-1) - 294*a(n-2) + 1372*a(n-3) - 2401*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000420(n).
Sum_{n>=2} 1/a(n) = (18/7)*log(7/6) - 11/28.
Sum_{n>=2} (-1)^n/a(n) = (32/7)*log(8/7) - 17/28. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A128967 a(n) = (n^3-n)*8^n.

Original entry on oeis.org

0, 384, 12288, 245760, 3932160, 55050240, 704643072, 8455716864, 96636764160, 1063004405760, 11338713661440, 117922622078976, 1200666697531392, 12006666975313920, 118219490218475520, 1148417904979476480, 11024811887802974208, 104735712934128254976
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 - n)*8^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    LinearRecurrence[{32, -384, 2048, -4096}, {0, 384, 12288, 245760}, 30] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 384x^2/(1-8x)^4.
a(n) = 384*A140802(n-2). (End)
a(n) = 32*a(n-1) - 384*a(n-2) + 2048*a(n-3) - 4096*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A001018(n).
Sum_{n>=2} 1/a(n) = (49/16)*log(8/7) - 13/32.
Sum_{n>=2} (-1)^n/a(n) = (81/16)*log(9/8) - 19/32. (End)

Extensions

Corrected the offset. - Mohammad K. Azarian, Nov 20 2008

A128969 a(n) = (n^3 - n)*9^n.

Original entry on oeis.org

0, 486, 17496, 393660, 7085880, 111602610, 1607077584, 21695547384, 278942752080, 3451916556990, 41422998683880, 484649084601396, 5551434969070536, 62453643402043530, 691794203838020640, 7560322370515511280, 81651481601567521824, 872650209616752889494
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*9^n: n in [0..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Magma
    I:=[0, 486, 17496, 393660]; [n le 4 select I[n] else 36*Self(n-1) - 486*Self(n-2) + 2916*Self(n-3) - 6561*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    CoefficientList[Series[486 x/(1 - 9 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008 (Start)
G.f.: 486x^2/(1-9x)^4.
a(n) = 486*A038291(n+1,3). (End)
a(n) = 36*a(n-1) - 486*a(n-2) + 2916*a(n-3) - 6561*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A001019(n).
Sum_{n>=2} 1/a(n) = (32/9)*log(9/8) - 5/12.
Sum_{n>=2} (-1)^n/a(n) = (50/9)*log(10/9) - 7/12. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008

A215228 T(n,k) = number of length-n 0..k arrays connected end-around, with no sequence of L

Original entry on oeis.org

2, 3, 2, 4, 6, 0, 5, 12, 6, 0, 6, 20, 24, 12, 0, 7, 30, 60, 72, 0, 0, 8, 42, 120, 240, 120, 18, 0, 9, 56, 210, 600, 720, 408, 0, 0, 10, 72, 336, 1260, 2520, 2940, 840, 24, 0, 11, 90, 504, 2352, 6720, 12600, 10080, 2448, 0, 0, 12, 110, 720, 4032, 15120, 40110, 57960, 38640
Offset: 1

Views

Author

R. H. Hardin, Aug 06 2012

Keywords

Comments

Table starts
2 3 4 5 6 7 8 9 10
2 6 12 20 30 42 56 72 90
0 6 24 60 120 210 336 504 720
0 12 72 240 600 1260 2352 4032 6480
0 0 120 720 2520 6720 15120 30240 55440
0 18 408 2940 12600 40110 105168 240408 496080
0 0 840 10080 57960 228480 710640 1874880 4379760
0 24 2448 38640 280560 1338120 4883424 14783328 38962080
0 0 5760 140400 1330560 7761600 33384960 116212320 345945600
0 0 15960 529440 6394680 45291120 228945360 915183360 3075040080
0 66 39864 1956900 30548760 263674950 1568401296 7203324744
0 72 108024 7335840 146516040 1537291560 10751253072
Empirical: row n is a polynomial of degree n.
Coefficients for rows 1-10, highest power first:
1 1
1 1 0
1 0 -1 0
1 0 -1 0 0
1 0 -5 0 4 0
1 0 -6 5 5 -5 0
1 0 -7 0 14 0 -8 0
1 0 -8 0 27 -12 -20 12 0
1 0 -9 0 27 0 -31 0 12 0
1 0 -10 0 35 9 -60 -25 34 16 0
Row n is divisible by n.
Column k is divisible by k+1.
From Robert Israel, Nov 23 2017: (Start)
Row n is a monic polynomial of degree n.
Proof: Let b(j,n,k) be the number of such arrays taking exactly j different values.
Then T(n,k) = Sum_{j <= n} b(j,n,k). But since the j values may be any combination of 0..k taken j at a time, b(j,n,k) = binomial(k+1,j)* b(j,n,j-1) which (if nonzero) is a polynomial in k of degree j.
In particular, b(n,n,n-1) = n!, so b(n,n,k) has degree n and leading coefficient 1. (End)

Examples

			Some solutions for n=5, k=4:
  3  0  1  1  1  0  4  4  0  1  3  2  2  3  1  0
  2  4  0  3  0  4  3  2  2  2  4  0  4  4  4  1
  0  2  2  2  2  3  0  3  1  4  0  4  3  1  0  0
  3  0  3  0  3  1  3  4  4  0  3  0  0  3  4  2
  1  3  2  4  0  2  1  0  1  4  2  1  4  0  2  3
		

Crossrefs

Column 2 is A066297.
Row 2 is A002378.
Row 3 is A007531(n+1).
Row 4 is A047928(n+1).
Row 5 is A052787(n+2).
Previous Showing 41-50 of 103 results. Next