cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A243631 Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
Offset: 0

Views

Author

Peter Luschny, Jun 08 2014

Keywords

Comments

Mirror image of A008550. - Philippe Deléham, Sep 26 2014

Examples

			   [0]  [1]      [2]      [3]      [4]      [5]      [6]     [7]
[0] 1,   1,       1,       1,       1,       1,       1,       1
[1] 1,   1,       1,       1,       1,       1,       1,       1
[2] 1,   2,       3,       4,       5,       6,       7,       8 .. A000027
[3] 1,   5,      11,      19,      29,      41,      55,      71 .. A028387
[4] 1,  14,      45,     100,     185,     306,     469,     680 .. A090197
[5] 1,  42,     197,     562,    1257,    2426,    4237,    6882 .. A090198
[6] 1, 132,     903,    3304,    8925,   20076,   39907,   72528 .. A090199
[7] 1, 429,    4279,   20071,   65445,  171481,  387739,  788019 .. A090200
   A000108, A001003, A007564, A059231, A078009, A078018, A081178
First few rows of the antidiagonal triangle are:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2,  1;
  1, 1, 3,  5,  1;
  1, 1, 4, 11, 14,  1;
  1, 1, 5, 19, 45, 42, 1; - _G. C. Greubel_, Feb 16 2021
		

Crossrefs

Cf. A001263, A008550 (mirror), A204057 (another version), A242369 (main diagonal), A099169 (diagonal), A307883, A336727.
Cf. A132745.

Programs

  • Magma
    A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    [A243631(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Maple
    # Computed with Narayana polynomials:
    N := (n,k) -> binomial(n,k)^2*(n-k)/(n*(k+1));
    A := (n,x) -> `if`(n=0, 1, add(N(n,k)*x^k, k=0..n-1));
    seq(print(seq(A(n,k), k=0..7)), n=0..7);
    # Computed by recurrence:
    Prec := proc(n,N,k) option remember; local A,B,C,h;
    if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
    else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
    B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
    (B*Prec(n-1,N,k) - C*Prec(n-2,N,k))/A fi end:
    T := (n, k) -> Prec(n,n,k)/(n+1);
    seq(print(seq(T(n,k), k=0..7)), n=0..7);
    # Array by o.g.f. of columns:
    gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
    for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
    # Row n by linear recurrence:
    rec := n -> a(x) = add((-1)^(k+1)*binomial(n,k)*a(x-k), k=1..n):
    ini := n -> seq(a(k) = A(n,k), k=0..n): # for A see above
    row := n -> gfun:-rectoproc({rec(n),ini(n)},a(x),list):
    for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
  • Mathematica
    MatrixForm[Table[JacobiP[n,1,-2*n-1,1-2*x]/(n+1), {n,0,7},{x,0,7}]]
    Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def NarayanaPolynomial():
        R = PolynomialRing(ZZ, 'x')
        D = [1]
        h = 0
        b = True
        while True:
            if b :
                for k in range(h, 0, -1):
                    D[k] += x*D[k-1]
                h += 1
                yield R(expand(D[0]))
                D.append(0)
            else :
                for k in range(0, h, 1):
                    D[k] += D[k+1]
            b = not b
    NP = NarayanaPolynomial()
    for _ in range(8):
        p = next(NP)
        [p(k) for k in range(8)]
    
  • Sage
    def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    flatten([[A243631(k,n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k) = 2F1([1-n, -n], [2], k), 2F1 the hypergeometric function.
T(n, k) = P(n,1,-2*n-1,1-2*k)/(n+1), P the Jacobi polynomials.
T(n, k) = sum(j=0..n-1, binomial(n,j)^2*(n-j)/(n*(j+1))*k^j), for n>0.
For a recurrence see the second Maple program.
The o.g.f. of column n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
T(n, k) ~ (sqrt(k)+1)^(2*n+1)/(2*sqrt(Pi)*k^(3/4)*n^(3/2)). - Peter Luschny, Nov 17 2014
The n-th row can for n>=1 be computed by a linear recurrence, a(x) = sum(k=1..n, (-1)^(k+1)*binomial(n,k)*a(x-k)) with initial values a(k) = p(n,k) for k=0..n and p(n,x) = sum(j=0..n-1, binomial(n-1,j)*binomial(n,j)*x^j/(j+1)) (implemented in the fourth Maple script). - Peter Luschny, Nov 19 2014
(n+1) * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-2) * T(n-2,k) for n>1. - Seiichi Manyama, Aug 08 2020
Sum_{k=0..n} T(k, n-k) = Sum_{k=0..n} 2F1([-k, 1-k], [2], n-k) = A132745(n). - G. C. Greubel, Feb 16 2021

A082147 a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 8^k*N(n,k) where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 9, 89, 945, 10577, 123129, 1476841, 18130401, 226739489, 2878666857, 37006326777, 480750990993, 6301611631473, 83240669582937, 1106980509493641, 14808497812637121, 199138509770855489, 2690461489090104009
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 + m*x - sqrt(m^2*x^2 - (2*m+4)*x+1))/( (2*m+2)*x) are given by a(n) = Sum_{k=0..n} (m+1)^k*N(n,k)).
The Hankel transform of this sequence is 8^C(n+1,2). - Philippe Deléham, Oct 29 2007
Shifts left when INVERT transform applied eight times. - Benedict W. J. Irwin, Feb 07 2016

Crossrefs

Programs

  • GAP
    a:=n->Sum([0..n],k->8^k*(1/n)*Binomial(n,k)*Binomial(n,k+1));;
    Concatenation([1],List([1..18],n->a(n))); # Muniru A Asiru, Feb 10 2018
  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1+7*x-Sqrt(49*x^2-18*x+1))/(16*x))) // G. C. Greubel, Feb 05 2018
    
  • Maple
    A082147_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+8*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A082147_list(18); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+7*x-Sqrt[49*x^2-18*x+1])/(16*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    f[n_] := Sum[ 8^k*Binomial[n, k]*Binomial[n, k + 1]/n, {k, 0, n}]; f[0] = 1; Array[f, 21, 0] (* Robert G. Wilson v, Feb 24 2018 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 8];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,8^k/n*binomial(n,k)*binomial(n,k+1)))
    

Formula

G.f.: (1 + 7*x - sqrt(49*x^2-18*x+1))/(16*x).
a(n) = Sum_{k=0..n} A088617(n, k)*8^k*(-7)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (9(2n-1)a(n-1) - 49(n-2)a(n-2)) / (n+1) for n >= 2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
a(n) = upper left term in M^n, M = the production matrix:
1, 1
8, 8, 8
1, 1, 1, 1
8, 8, 8, 8, 8
1, 1, 1, 1, 1, 1
...
- Gary W. Adamson, Jul 08 2011
a(n) ~ sqrt(16+18*sqrt(2))*(9+4*sqrt(2))^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 8*x/(1 - x/(1 - 8*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 8). - Peter Luschny, Mar 19 2018

A131198 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,1,0,1,0,1,0,...] DELTA [0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 20 2007

Keywords

Comments

Mirror image of triangle A090181, another version of triangle of Narayana (A001263).
Equals A133336*A130595 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,   0;
  1,  3,   1,   0;
  1,  6,   6,   1,   0;
  1, 10,  20,  10,   1,   0;
  1, 15,  50,  50,  15,   1,  0;
  1, 21, 105, 175, 105,  21,  1, 0;
  1, 28, 196, 490, 490, 196, 28, 1, 0; ...
		

Crossrefs

Programs

  • Magma
    [[n le 0 select 1 else (n-k)*Binomial(n,k)^2/(n*(k+1)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
  • Maple
    T := (n,k) -> `if`(n=0, 0^n, binomial(n,k)^2*(n-k)/(n*(k+1)));
    seq(print(seq(T(n,k), k=0..n)), n=0..5); # Peter Luschny, Jun 08 2014
    R := n -> simplify(hypergeom([1 - n, -n], [2], x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[If[n == 0, 1, (n-k)*Binomial[n,k]^2/(n*(k+1))], {n,0,10}, {k,0,n}] //Flatten (* G. C. Greubel, Feb 06 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0,1, (n-k)*binomial(n,k)^2/(n* (k+1))), ", "))) \\ G. C. Greubel, Feb 06 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 23 2007
Sum_{k=0..floor(n/2)} T(n-k,k) = A004148(n). - Philippe Deléham, Nov 06 2007
T(2*n,n) = A125558(n). - Philippe Deléham, Nov 16 2011
T(n, k) = [x^k] hypergeom([1 - n, -n], [2], x). - Peter Luschny, Apr 26 2022

A082148 a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 10^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 11, 131, 1661, 22101, 305151, 4335711, 63009881, 932449961, 14004694451, 212944033051, 3271618296661, 50711564152381, 792088104593511, 12454801769554551, 196991734871121201, 3131967533789345361, 50026642742943415131, 802406215117502069811
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally, coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by: a(n) = Sum_{k=0..n} (m+1)^k*N(n,k)).
The Hankel transform of this sequence is 10^C(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) = upper left term in M^n, M = the production matrix:
1, 1;
10, 10, 10;
1, 1, 1, 1;
10, 10, 10, 10, 10;
1, 1, 1, 1, 1, 1;
...
- Gary W. Adamson, Jul 08 2011
Shifts left when INVERT transform applied ten times. - Benedict W. J. Irwin, Feb 07 2016
For fixed m > 0, if g.f. = (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) then a(n,m) ~ (m + 2 + 2*sqrt(m+1))^(n + 1/2) / (2*sqrt(Pi) * (m+1)^(3/4) * n^(3/2)). - Vaclav Kotesovec, Mar 19 2018

Crossrefs

Programs

  • Magma
    I:=[1,11]; [1] cat [n le 2 select I[n] else (11*(2*n-1)*Self(n-1) - 81*(n-2)*Self(n-2))/(n+1): n in [1..30]]; // G. C. Greubel, Feb 10 2018
  • Maple
    A082148_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w]:=a[w-1]+10*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A082148_list(17); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+9*x-Sqrt[81*x^2-22*x+1])/(20*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := Sum[10^k*1/n*Binomial[n, k]*Binomial[n, k + 1], {k, 0, n}];
    a[0] = 1; Array[a, 20, 0] (* Robert G. Wilson v, Feb 10 2018 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 10];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,10^k/n*binomial(n,k)*binomial(n,k+1)))
    

Formula

G.f.: (1+9*x-sqrt(81*x^2-22*x+1))/(20*x).
a(n) = Sum_{k=0..n} A088617(n, k)*10^k*(-9)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (11*(2n-1)*a(n-1) - 81*(n-2)*a(n-2)) / (n+1) for n>=2, a(0)=a(1)=1. - Philippe Deléham, Aug 19 2005
a(n) ~ sqrt(20+11*sqrt(10))*(11+2*sqrt(10))^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 10*x/(1 - x/(1 - 10*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
a(n) = hypergeom([1 - n, -n], [2], 10). - Peter Luschny, Mar 19 2018

A082173 a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 11^k*N(n,k) where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 12, 155, 2124, 30482, 453432, 6936799, 108507180, 1727970542, 27924685416, 456820603086, 7550600079672, 125905525750500, 2115511349837040, 35782547891727495, 608787760350045420, 10411451736723707990
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 + m*x - sqrt(m^2*x^2 -(2*m+4)*x + 1) )/((2*m+2)*x) are given by a(n) = Sum_{k=0..n} (m+1)^k*N(n,k).
The Hankel transform of this sequence is 11^C(n+1,2). - Philippe Deléham, Oct 29 2007
For fixed m > 0, if g.f. = (1 + m*x - sqrt(m^2*x^2 -(2*m+4)*x + 1) )/((2*m+2)*x) then a(n,m) ~ (m + 2 + 2*sqrt(m+1))^(n + 1/2) / (2*sqrt(Pi) * (m+1)^(3/4) * n^(3/2)). - Vaclav Kotesovec, Mar 19 2018

Crossrefs

Programs

  • Magma
    [1] cat [&+[11^k*Binomial(n, k)*Binomial(n, k+1)/n:k in [0..n]]:n in [1..18]]; // Marius A. Burtea, Jan 22 2020
    
  • Maple
    A082173_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+11*add(a[j]*a[w-j-1],j=1..w-1)od;
    convert(a, list) end: A082173_list(17); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+10*x-Sqrt[100*x^2-24*x+1])/(22*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 11];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,11^k/n*binomial(n,k)*binomial(n,k+1)))
    
  • SageMath
    def A082173_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+10*x-sqrt(100*x^2-24*x+1))/(22*x) ).list()
    A082173_list(30) # G. C. Greubel, Jan 21 2024

Formula

G.f.: (1+10*x-sqrt(100*x^2-24*x+1))/(22*x).
a(n) = Sum_{k=0..n} A088617(n, k)*11^k*(-10)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (12*(2n-1)*a(n-1) - 100*(n-2)*a(n-2)) / (n+1) for n >= 2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
11, 11, 11
1, 1, 1, 1
11, 11, 11, 11, 11
1, 1, 1, 1, 1, 1
... (End)
a(n) ~ sqrt(22+12*sqrt(11))*(12+2*sqrt(11))^n/(22*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 11*x/(1 - x/(1 - 11*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
a(n) = hypergeom([1 - n, -n], [2], 11). - Peter Luschny, Mar 19 2018

A082181 a(0) = 1, for n>=1, a(n) = Sum_{k=0..n} 9^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 10, 109, 1270, 15562, 198100, 2596645, 34825150, 475697854, 6595646860, 92590323058, 1313427716380, 18798095833012, 271118225915560, 3936516861402901, 57494017447915150, 844109420603623030
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally, coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by: a(n) = Sum_{k=0..n} (m+1)^k*N(n,k).
The Hankel transform of this sequence is 9^C(n+1,2). - Philippe Deléham, Oct 29 2007
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
9, 9, 9
1, 1, 1, 1
9, 9, 9, 9, 9
1, 1, 1, 1, 1, 1
... (End)
Shifts left when INVERT transform applied nine times. - Benedict W. J. Irwin, Feb 07 2016

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,k)*Binomial(n-1,k)*9^k/(k+1): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 23 2022
    
  • Maple
    A082181_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+9*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A082181_list(17); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+8*x-Sqrt[64*x^2-20*x+1])/(18*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 9];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,9^k/n*binomial(n,k)*binomial(n,k+1)))
    
  • SageMath
    [sum(binomial(n,k)*binomial(n-1,k)*9^k/(k+1) for k in (0..n)) for n in (0..30)] # G. C. Greubel, May 23 2022

Formula

G.f.: (1+8*x-sqrt(64*x^2-20*x+1))/(18*x).
a(n) = Sum_{k=0..n} A088617(n, k)*9^k*(-8)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (10*(2*n-1)*a(n-1) - 64*(n-2)*a(n-2)) / (n+1) for n>=2, a(0)=a(1)=1. - Philippe Deléham, Aug 19 2005
a(n) ~ 2^(4*n+1)/(3*sqrt(3*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 9*x/(1 - x/(1 - 9*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 9). - Peter Luschny, Mar 19 2018

Extensions

Corrected by T. D. Noe, Oct 25 2006

A133336 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2007

Keywords

Comments

Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009

Examples

			Triangle begins:
    1;
    1,    0;
    2,    1,    0;
    5,    5,    1,   0;
   14,   21,    9,   1,   0;
   42,   84,   56,  14,   1,  0;
  132,  330,  300, 120,  20,  1, 0;
  429, 1287, 1485, 825, 225, 27, 1, 0;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009

A204057 Triangle derived from an array of f(x), Narayana polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 45, 42, 1, 1, 6, 29, 100, 197, 132, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1, 1, 10, 89, 680, 4237, 20076, 65445, 124996, 103049, 16796, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 09 2012

Keywords

Comments

Row sums = (1, 2, 4, 10, 31, 113, 466, 2129, 10641, 138628, 335379, 2702364,...)
Another version of triangle in A008550. - Philippe Deléham, Jan 13 2012
Another version of A243631. - Philippe Deléham, Sep 26 2014

Examples

			First few rows of the array =
  1,....1,....1,.....1,.....1,...; = A000012
  1.....2,....5,....14,....42,...; = A000108
  1,....3,...11,....45,...197,...; = A001003
  1,....4,...19,...100,...562,...; = A007564
  1,....5,...29,...185,..1257,...; = A059231
  1,....6,...41,...306,..2426,...; = A078009
  ...
First few rows of the triangle =
  1;
  1, 1;
  1, 2,  1;
  1, 3,  5,   1;
  1, 4, 11,  14,    1;
  1, 5, 19,  45,   42,    1;
  1, 6, 29, 100,  197,  132,     1;
  1, 7, 41, 185,  562,  903,   429,     1;
  1, 8, 55, 306, 1257, 3304,  4279,  1430,    1;
  1, 9, 71, 469, 2426, 8952, 20071, 20793, 4862, 1;
  ...
Examples: column 4 of the array = A090197: (1, 14, 45, 100,...) = N(4,n) where N(4,x) is the 4th Narayana polynomial.
Term (5,3) = 29 is the upper left term of M^3, where M = the infinite square production matrix:
  1, 4, 0, 0, 0,...
  1, 1, 4, 0, 0,...
  1, 1, 1, 4, 0,...
  1, 1, 1, 1, 4,...
... generating row 5, A059231: (1, 5, 29, 185,...).
		

Crossrefs

Programs

  • Magma
    A204057:= func< n, k | n eq 0 select 1 else (&+[ Binomial(n, j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    [A204057(k, n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A204057(n, k): return 1 if n==0 else sum( binomial(n, j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    flatten([[A204057(k, n-k) for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

The triangle is the set of antidiagonals of an array in which columns are f(x) of the Narayana polynomials; with column 1 = (1, 1, 1,...) column 2 = (1, 2, 3,..), column 3 = A028387, column 4 = A090197, then A090198, A090199,...
The array by rows is generated from production matrices of the form:
1, (N-1)
1, 1, (N-1)
1, 1, 1, (N-1)
1, 1, 1, 1, (N-1)
...(infinite square matrices with the rest zeros); such that if the matrix is M, n-th term in row N is the upper left term of M^n.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = Hypergeometric2F1([1-k, -k], [2], n-k).
Sum_{k=1..n} T(n, k) = A132745(n) - 1. (End)

Extensions

Corrected by Philippe Deléham, Jan 13 2012

A331515 Expansion of 1/(1 - 8*x + 4*x^2)^(3/2).

Original entry on oeis.org

1, 12, 114, 1000, 8430, 69384, 561988, 4499856, 35719830, 281634760, 2208564732, 17242680624, 134118558028, 1039939550160, 8041848166920, 62042202765856, 477670318108902, 3670988584476744, 28166853684793420, 215807899372086000, 1651323989374972836
Offset: 0

Views

Author

Seiichi Manyama, Jan 19 2020

Keywords

Crossrefs

Column 4 of A331514.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 21); Coefficients(R!( 1/(1 - 8*x + 4*x^2)^(3/2))); // Marius A. Burtea, Jan 20 2020
    
  • Magma
    [&+[2^(n-k)*k*Binomial(n+1, k)*Binomial(n+k+1,k):k in [1..n+1]]:n in [0..21]]; // Marius A. Burtea, Jan 20 2020
  • Mathematica
    a[n_] := Sum[2^(n - k) * k * Binomial[n + 1, k] * Binomial[n + 1 + k, k], {k, 1, n + 1}]; Array[a, 21, 0] (* Amiram Eldar, Jan 20 2020 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-8*x+4*x^2)^(3/2))
    
  • PARI
    a(n) = sum(k=1, n+1, 2^(n-k)*k*binomial(n+1, k)*binomial(n+1+k, k));
    

Formula

a(n) = Sum_{k=1..n+1} 2^(n-k) * k * binomial(n+1,k) * binomial(n+1+k,k).
n * a(n) = 4 * (2*n+1) * a(n-1) - 4 * (n+1) * a(n-2) for n>1.
a(n) = ((n+2)/2) * Sum_{k=0..n} 3^k * binomial(n+1,k) * binomial(n+1,k+1).
a(n) ~ 2^(n - 1/2) * (2 + sqrt(3))^(n + 3/2) * sqrt(n) / (3^(3/4) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
From Seiichi Manyama, Aug 20 2025: (Start)
a(n) = binomial(n+2,2) * A007564(n+1).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 3^k * 4^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} 2^k * (-1/2)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k). (End)

A336707 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 2^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 20, 1, 1, 5, 19, 45, 72, 1, 1, 6, 30, 100, 197, 272, 1, 1, 7, 44, 201, 562, 903, 1064, 1, 1, 8, 61, 364, 1445, 3304, 4279, 4272, 1, 1, 9, 81, 605, 3249, 10900, 20071, 20793, 17504, 1, 1, 10, 104, 940, 6502, 30526, 85128, 124996, 103049, 72896
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,     1,     1,      1, ...
    1,   1,    1,     1,     1,     1,      1, ...
    2,   3,    4,     5,     6,     7,      8, ...
    6,  11,   19,    30,    44,    61,     81, ...
   20,  45,  100,   201,   364,   605,    940, ...
   72, 197,  562,  1445,  3249,  6502,  11857, ...
  272, 903, 3304, 10900, 30526, 73723, 158034, ...
		

Crossrefs

Columns k=0-3 give: A071356(n-1), A001003, A007564, A118346.
Main diagonal gives A336712.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[2^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {T(n, k) = if(n==0, 1, sum(j=1, n, 2^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
    
  • PARI
    {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-2*x*A)); polcoef(A, n)}

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k / (1 - 2 * x * A_k(x)).
Previous Showing 11-20 of 29 results. Next