cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A364923 G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 - 2*x*A(x)^3).

Original entry on oeis.org

1, 1, 6, 48, 442, 4419, 46626, 511032, 5761650, 66394596, 778518552, 9258850440, 111417705702, 1354135251538, 16598001854700, 204945037918800, 2546849778687138, 31828936270676172, 399777371427582024, 5043824569861127808, 63892650400004356776
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2023

Keywords

Crossrefs

Programs

  • Maple
    A364923 := proc(n)
        add( 3^k*(-2)^(n-k)*binomial(n,k)*binomial(3*n+k+1,n)/(3*n+k+1),k=0..n) ;
    end proc:
    seq(A364923(n),n=0..80); # R. J. Mathar, Aug 16 2023
  • PARI
    a(n) = sum(k=0, n, 3^k*(-2)^(n-k)*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));

Formula

a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(n,k) * binomial(3*n+k+1,n) / (3*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^k * binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 3^(n-k) * binomial(n,k) * binomial(3*n,k-1) for n > 0.
D-finite with recurrence +270*n*(3*n-1)*(3*n+1)*a(n) +(-9463*n^3 -45948*n^2 +88297*n -35478)*a(n-1) +36*(-9017*n^3 +49691*n^2 -90408*n +54354)*a(n-2) +48*(53*n^3 +1724*n^2 -11161*n +16518)*a(n-3) +576*(3*n-10)*(3*n-11) *(n-4)*a(n-4)=0. - R. J. Mathar, Aug 16 2023

A224071 Number of Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.

Original entry on oeis.org

1, 2, 5, 15, 52, 201, 841, 3726, 17213, 82047, 400600, 1993377, 10071777, 51532938, 266462229, 1390174911, 7308741084, 38682855225, 205940368441, 1102091393574, 5925177392573, 31987877317887, 173337754977904
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is A006215. Invert transform of A155069. - Michael Somos, Apr 02 2013

Examples

			a(2) = 5 because we have HH, UDH, HUD, UDUD and UUDD.
G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 52*x^4 + 201*x^5 + 841*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4/(3-5*x+Sqrt[x^2-6*x+1]), {x, 0, 20}], x] (* Vaclav Kotesovec, May 23 2013 *)
    a[ n_] := SeriesCoefficient[ (3 - 5 x - Sqrt[ 1 - 6 x + x^2]) / (2 - 6 x + 6 x^2), {x, 0, n}]; (* Michael Somos, Mar 28 2014 *)
  • Maxima
    a(n):=sum((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*sum(binomial(n+1,n-k-i)*binomial(n+i,n),i,0,n-k),k,0,n)/(2*(n+1)); /* Vladimir Kruchinin, Mar 08 2016*/
  • PARI
    z='z+O('z^66); Vec(4/(3-5*z+sqrt(1-6*z+z^2))) /* Joerg Arndt, Mar 30 2013 */
    

Formula

G.f.: 4/(3-5*x+sqrt(1-6*x+x^2)).
Recurrence: n*a(n) = 9*(n-1)*a(n-1) - 2*(11*n-15)*a(n-2) + 3*(7*n-12)*a(n-3) - 3*(n-3)*a(n-4). - Vaclav Kotesovec, May 23 2013
a(n) ~ sqrt(884+627*sqrt(2)) * (3+2*sqrt(2))^n / (98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 23 2013
0 = +a(n)*(+9*a(n+1) - 144*a(n+2) + 174*a(n+3) - 81*a(n+4) + 12*a(n+5)) + a(n+1)*(+18*a(n+1) + 399*a(n+2) - 597*a(n+3) + 318*a(n+4) - 57*a(n+5)) + a(n+2)*(-300*a(n+2) + 538*a(n+3) - 255*a(n+4) + 52*a(n+5)) + a(n+3)*(-126*a(n+3) + 73*a(n+4) - 18*a(n+5)) + a(n+4)*(+a(n+5)) if n>=0. - Michael Somos, Mar 28 2014
a(n) = Sum_{k=0..n}((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*Sum_{i=0..n-k}(binomial(n+1,n-k-i)*binomial(n+i,n)))/(2*(n+1)). - Vladimir Kruchinin, Mar 08 2016

A336729 G.f. A(x) satisfies: A(x) = 1 + x * A(x) / (1 + 3 * x * A(x)).

Original entry on oeis.org

1, 1, -2, 1, 10, -38, 28, 289, -1262, 1054, 11044, -51302, 45604, 482068, -2319176, 2140129, 22753378, -111964106, 105927508, 1130780062, -5652760340, 5444054956, 58291068808, -294808277414, 287740874260, 3088109246572, -15758505143192, 15541351662484, 167103084713608
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2020

Keywords

Crossrefs

Column k=3 of A336727.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-3)^(n - k) * Binomial[n, k] * Binomial[n , k - 1], {k, 1, n}] / n; Array[a, 29, 0] (* Amiram Eldar, Aug 02 2020 *)
  • PARI
    {a(n) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+3*x*A)); polcoef(A, n)}
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, (-3)^(n-k)*binomial(n, k)*binomial(n, k-1))/n)}
    
  • PARI
    N=40; x='x+O('x^N); Vec(2/(1-4*x+sqrt(1+4*x+16*x^2)))
    
  • PARI
    {a(n) = sum(k=0, n, (-3)^k*4^(n-k)*binomial(n, k)*binomial(n+k, n)/(k+1))}

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-3)^(n-k) * binomial(n,k) * binomial(n,k-1) for n > 0.
G.f.: 2/(1 - 4*x + sqrt(1 + 4*x + 16*x^2)).
a(n) = Sum_{k=0..n} (-3)^k * 4^(n-k) * binomial(n,k) * binomial(n+k,n)/(k+1).
(n+1) * a(n) = -2 * (2*n-1) * a(n-1) - 16 * (n-2) * a(n-2) for n>1. - Seiichi Manyama, Aug 08 2020
a(n) ~ 2^(2*n - 1/2) * ((sqrt(3) + 1)*sin(2*Pi*n/3) + (sqrt(3) - 1)*cos(2*Pi*n/3)) / (3^(3/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 04 2020

A371363 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^3 / (1-2*x) ).

Original entry on oeis.org

1, 7, 85, 1261, 20788, 365845, 6731758, 127938625, 2491921516, 49480794460, 997897366717, 20384025765619, 420869454302620, 8769197604091246, 184151509243984300, 3893585866824069577, 82817275938125471548, 1770880435886367151060
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^3/(1-2*x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n+k+2, k)*binomial(3*n+1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * binomial(3*n+k+2,k) * binomial(3*n+1,n-k).

A234939 Coefficients of Hilbert series for suboperad of bicolored noncrossing configurations generated by a triangle with colored base and at least one more colored edge and a triangle with one colored non-base edge.

Original entry on oeis.org

1, 2, 8, 38, 200, 1124, 6608, 40142, 249992, 1587548, 10241264, 66926204, 442120016, 2947660616, 19808372384, 134030802782, 912385334792, 6244056445868, 42935538999728, 296493196682036, 2055313327353200, 14297177397185912, 99769106353379168, 698228176760193068
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2014

Keywords

Crossrefs

Formula

a(n) = 2 * A007564(n-1) for n > 1 [from Chapoton & Giraudo, Proposition 3.8]. - Andrey Zabolotskiy, Feb 01 2025

Extensions

Terms a(9) onwards added and name clarified by Andrey Zabolotskiy, Feb 02 2025

A364924 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - 2*x*A(x)^4).

Original entry on oeis.org

1, 1, 7, 67, 743, 8970, 114445, 1517976, 20722023, 289224355, 4108588558, 59207805442, 863439906413, 12718638581368, 188960182480440, 2828238875318256, 42605850936335463, 645497106959662857, 9829072480785776101, 150345303724987825021
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 3^k*(-2)^(n-k)*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1));

Formula

a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(n,k) * binomial(4*n+k+1,n) / (4*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^k * binomial(n,k) * binomial(5*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 3^(n-k) * binomial(n,k) * binomial(4*n,k-1) for n > 0.

A371362 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^2 / (1-2*x) ).

Original entry on oeis.org

1, 4, 31, 298, 3199, 36742, 441748, 5489554, 69945295, 908836768, 11996580199, 160418984656, 2168512922692, 29584600414168, 406823494817560, 5632906243123090, 78465351036084655, 1098851032467132484, 15461857967408794333, 218490450548650811914
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^2/(1-2*x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * binomial(2*n+k+1,k) * binomial(2*n,n-k).

A243693 Number of Hyposylvester classes of 3-multiparking functions of length n.

Original entry on oeis.org

1, 1, 5, 32, 233, 1833, 15180, 130392, 1151057, 10378883, 95182445, 885053524, 8324942620, 79071217228, 757310811912, 7305728683824, 70923966744609, 692370887676567, 6792525607165935, 66933512163735000, 662190712902022017, 6574831459429388169, 65494637699437417584
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2014

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n <= 1 then return 1 fi;
    (a(n - 2)*(-800*n^3 + 3024*n^2 - 3184*n + 672) + a(n - 1)*(3275*n^3 - 7467*n^2 +
    5038*n - 1008))/(300*n^3 - 234*n^2 - 192*n) end:
    seq(a(n), n = 0..22);  # Peter Luschny, Apr 13 2024
  • Mathematica
    a[n_] := 3^(n - Boole[n>0]) Hypergeometric2F1[1 - n, -2 n, 2, 1/3];
    Table[a[n], {n, 0, 22}]  (* Peter Luschny, Apr 12 2024 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*(-2)^(n-k)*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Aug 12 2023

Formula

From Seiichi Manyama, Aug 12 2023: (Start)
The following statements are equivalent:
The g.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - 2*x*A(x)^2).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(n, k) * binomial(2*n+k+1, n) / (2*n + k + 1).
a(n) = (1/n) * Sum_{k=1..n} 3^(n-k) * binomial(n, k) * binomial(2*n, k-1) for n > 0.
a(n) = (1/n) * Sum_{k=0..n-1} 2^k * binomial(n, k)*binomial(3*n-k, n-1-k) for n > 0.
(End)
The above formula is proved in Theorem 4.1 of the Jun Yan link to be the number of Hyposylvester classes of 3-multiparking functions of length n. - Jun Yan, Apr 12 2024
a(n) ~ 2^(5*n+1) / (sqrt(5*Pi) * n^(3/2) * 3^(n+1)). - Vaclav Kotesovec, Apr 12 2024
a(n) = 3^(n - 1) * hypergeom([1 - n, -2*n], [2], 1/3) for n > 0. - Peter Luschny, Apr 12 2024
G.f. A(x) = 1 + series_reversion( x/((1 + 3*x)*(1 + x)^2) ). - Peter Bala, Sep 10 2024

Extensions

Name clarified by Jun Yan, Apr 12 2024

A250307 Number of 2-colored Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.

Original entry on oeis.org

1, 3, 10, 37, 152, 690, 3422, 18257, 103144, 608730, 3713524, 23235490, 148281656, 961255200, 6311395814, 41878914665, 280365966232, 1891270498050, 12842102343820, 87703053156406, 601999871121200, 4150859861430252, 28736613316786220, 199671324115916570
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 10 because we have H1H1, H1H2, H2H1, H2H2, UDH1, UDH2, H1UD, H2UD, UDUD and UUDD.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 2 x - x (1 + 2 x - Sqrt[1 - 8 x + 4 x^2])/(6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 21 2015 *)
  • Maxima
    a(n):=sum((k+1)*(sum(2^j*(-1)^(-k+j)*binomial(k-j,j),j,0,k))*sum(binomial(j,-n-k+2*j-2)*4^(-n-k+2*j-2)*3^(n-j+1)*binomial(n+1,j),j,0,n+1),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 08 2016 */

Formula

G.f.: 6/(5-14*x+sqrt(1-8*x+4*x^2))=1/(1-2*x-x*F(x)), where F(x) is the g.f. of the sequence A007564.
a(n) ~ sqrt(1275+746*sqrt(3)) * (2*(2+sqrt(3)))^n / (121*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
a(n) = Sum_{k=0..n}((k+1)*(Sum_{j=0..k}(2^j*(-1)^(-k+j)*binomial(k-j,j)))*Sum_{j=0..n+1}(binomial(j,-n-k+2*j-2)*4^(-n-k+2*j-2)*3^(n-j+1)*binomial(n+1,j)))/(n+1). - Vladimir Kruchinin, Mar 08 2016
Conjecture: 2*n*a(n) +3*(-9*n+8)*a(n-1) +4*(28*n-39)*a(n-2) +4*(-43*n+81)*a(n-3) +64*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 24 2016

Extensions

More terms from Vincenzo Librandi, Apr 21 2015
Previous Showing 21-29 of 29 results.