cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A277792 Squares that are also pentagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 196, 2601, 15376, 60025, 181476, 461041, 1032256, 2099601, 3960100, 7027801, 11861136, 19193161, 29964676, 45360225, 66846976, 96216481, 135629316, 187662601, 255360400, 342287001, 452583076, 591024721, 763085376, 975000625, 1233835876, 1547556921, 1925103376, 2376465001, 2912760900
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Comments

Intersection of A000290 and A002411.

Examples

			a(2) = 196 because 196 = 14^2 is a perfect square and 196 = 7^2*(7 + 1)/2 is the 7th pentagonal pyramidal number.
		

Crossrefs

Programs

  • Magma
    [n^2*(2*n^2-1)^2: n in [0..30]]; // Vincenzo Librandi, Nov 01 2016
  • Mathematica
    Table[n^2 (2 n^2 - 1)^2, {n, 0, 30}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,196,2601,15376,60025,181476},40] (* Harvey P. Dale, Nov 01 2024 *)

Formula

O.g.f.: x*(1 + 189*x + 1250*x^2 + 1250*x^3 + 189*x^4 + x^5)/(1 - x)^7.
E.g.f.: x*(1 + 97*x + 336*x^2 + 256*x^3 + 60*x^4 + 4*x^5)*exp(x).
a(n) = a(-n).
a(n) = n^2*(2*n^2 - 1)^2.
a(n) = A000290(A007588(n)).
a(n) = A000290(n)*A000290(A056220(n)).
Sum_{n>=1} 1/a(n) = (2*Pi^2+9*sqrt(2)*Pi*cot(Pi/sqrt(2))+3*Pi^2*csc(Pi/sqrt(2))^2-24)/12 = 1.0055779712856...

A281699 Sierpinski stellated octahedron numbers: a(n) = 2*(-3*2^(n+1) + 2^(2n+3) + 5).

Original entry on oeis.org

14, 50, 218, 938, 3914, 16010, 64778, 260618, 1045514, 4188170, 16764938, 67084298, 268386314, 1073643530, 4294770698, 17179475978, 68718690314, 274876334090, 1099508482058, 4398040219658, 17592173461514, 70368719011850, 281474926379018, 1125899806179338, 4503599426043914, 18014398106828810
Offset: 0

Views

Author

Steven Beard, Jan 27 2017

Keywords

Comments

Stella octangula with Sierpinski recursion.

Crossrefs

Programs

  • Mathematica
    Table[8 (2^(2 n + 1) + 2) - 6 (2^(n + 1) + 1), {n, 0, 25}] (* or *)
    LinearRecurrence[{7, -14, 8}, {14, 50, 218}, 26] (* or *)
    CoefficientList[Series[2 (7 - 24 x + 32 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Jan 28 2017 *)
  • PARI
    Vec(2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
    
  • PARI
    a(n) = 16*4^n - 12*2^n + 10 \\ Charles R Greathouse IV, Jan 29 2017

Formula

a(n) = 8*(2^(2*n+1)+2) - 6*(2^(n+1)+1).
From Colin Barker, Jan 28 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: 2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)

A342237 Table read by upward antidiagonals: T(n,k) is the number of strings of length k over an n-letter alphabet that begin with a palindrome of two or more letters; n, k >= 1.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 15, 14, 1, 0, 5, 28, 51, 30, 1, 0, 6, 45, 124, 165, 62, 1, 0, 7, 66, 245, 532, 507, 126, 1, 0, 8, 91, 426, 1305, 2164, 1551, 254, 1, 0, 9, 120, 679, 2706, 6605, 8788, 4683, 510, 1, 0, 10, 153, 1016, 5005, 16386, 33405, 35284, 14127, 1022, 1
Offset: 1

Views

Author

Peter Kagey, Mar 06 2021

Keywords

Examples

			Table begins:
n\k | 1  2   3    4      5       6        7         8
----+------------------------------------------------
  1 | 0  1   1    1      1       1        1         1
  2 | 0  2   6   14     30      62      126       254
  3 | 0  3  15   51    165     507     1551      4683
  4 | 0  4  28  124    532    2164     8788     35284
  5 | 0  5  45  245   1305    6605    33405    167405
  6 | 0  6  66  426   2706   16386    99186    595986
  7 | 0  7  91  679   5005   35287   248731   1742839
  8 | 0  8 120 1016   8520   68552   551496   4415048
		

Crossrefs

Rows: A000918 (n=2), A248122 (n=3), A249629 (n=4), A249638 (n=5), A249639 (n=6), A249640 (n=7), A249641 (n=8), A249642 (n=9), A249643 (n=10).
Columns: A000384 (k=3), A007588 (k=4).

Formula

T(n,1) = 0.
T(n,2k) = n*T(n,2k-1) + n^k - T(n,k).
T(n,2k+1) = n*T(n,2k) + n^(k+1) - T(n,k+1).

A347753 Number of polyhedra formed when a row of n adjacent cubes are internally cut by all the planes defined by any three of their vertices.

Original entry on oeis.org

96, 2968, 42384, 319416
Offset: 1

Views

Author

Scott R. Shannon, Sep 12 2021

Keywords

Comments

For a row of n adjacent cubes create all possible planes defined by connecting any three of their vertices. For example, in the case of a single cube this results in fourteen planes; six planes between the pairs of parallel edges connected to each end of the face diagonals, and eight planes from connecting the three vertices adjacent to each corner vertex. Use all the resulting planes to cut the entire solid into individual smaller polyhedra. The sequence lists the numbers of resulting polyhedra for n adjacent cubes.
See A347918 for the number of k-faced polyhedra for each value of n.

Examples

			a(1) = 96. A single cube, with eight vertices, has 14 internal cutting planes resulting in 96 polyhedra. See A333539 and A338571.
a(2) = 2968. Two adjacent cubes, with twelve vertices, have 51 internal cutting planes resulting in 2968 polyhedra.
a(3) = 42384. Three adjacent cubes, with sixteen vertices, have 124 internal cutting planes resulting in 42384 polyhedra.
a(4) = 319416. Four adjacent cubes, with twenty vertices, have 245 internal cutting planes resulting in 319416 polyhedra.
		

Crossrefs

Cf. A347918 (number of k-faced polyhedra), A333539 (n-dimensional cube), A338571 (Platonic solids), A338783 (n-prism), A338809 (n-bipyramid), A007588.

Formula

a(1) = A333539(3).
Conjectured formula for the number of internal cutting planes for n adjacent cubes is A007588(n+1).

A152912 Primes p such that 2*p^2-1 is not prime.

Original entry on oeis.org

5, 19, 23, 29, 31, 37, 47, 53, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 131, 139, 149, 151, 163, 167, 173, 191, 193, 223, 227, 229, 233, 239, 241, 257, 269, 271, 281, 283, 307, 313, 317, 331, 337, 347, 349, 359, 373, 383, 389, 397, 401, 421, 431, 439, 443
Offset: 1

Views

Author

Vincenzo Librandi, Dec 15 2008

Keywords

Comments

Primes not in A106483. Primes p such that 2p^2-1 is not in A092057. - R. J. Mathar, Dec 19 2008

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500)|not IsPrime(2*p^2-1)]; // Vincenzo Librandi, Aug 30 2012
  • Maple
    a := proc (n) if isprime(n) = true and isprime(2*n^2-1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # Emeric Deutsch, Jan 02 2009
  • Mathematica
    Select[Prime[Range[100]], !PrimeQ[2 #^2 - 1] &] (* Vincenzo Librandi, Aug 30 2012 *)

Extensions

Definition clarified by R. J. Mathar, Dec 19 2008
Extended by Emeric Deutsch, Jan 02 2009

A229384 Positive integer solutions y1, x1, y2, x2 to Ljunggren's equation x^2 + 1 = 2y^4.

Original entry on oeis.org

1, 1, 13, 239
Offset: 1

Views

Author

Jonathan Sondow, Sep 30 2013

Keywords

Comments

See the Wikipedia links for other references.
The only square stella octangula numbers are A007588(1) = (a(1)*a(2))^2 = 1 and A007588(169) = (a(3)*a(4))^2 = 9653449.

Examples

			239^2 + 1 = 57122 = 2*13^4.
		

References

  • W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.

Crossrefs

Cf. A007588.

A281999 Half of the height of the right trapezoidal gnomon (of the derivative of Y=X^5).

Original entry on oeis.org

1, 30, 181, 600, 1501, 3150, 5881, 10080, 16201, 24750, 36301, 51480, 70981, 95550, 126001, 163200, 208081, 261630, 324901, 399000, 485101, 584430, 698281, 828000, 975001, 1140750, 1326781, 1534680, 1766101, 2022750, 2306401, 2618880, 2962081, 3337950, 3748501, 4195800
Offset: 1

Views

Author

Stefano Maruelli, Feb 05 2017

Keywords

Comments

The curves Y = X^m are characterized by the fact that the first derivative Y'= m*X^(m-1) (and all the following derivatives) are squarable in the integers by rectangular columns called gnomons with base=1 and height M_m = X^m - (X-1)^m. Calling Y' = X^m - (X-1)^m the first "integer" derivative, considering the case m=5, {a(n)} represents the values of half of the maximum (right) height of the trapezoidal gnomons. The formula is: a(n) = (n^5 - (n-1)^5) - a(n-1). The broken line given by joining the points (n; 2*a(n)); define a series of trapezoidal areas (gnomons) that have the same area below the curve Y'=5*X^4. It means that the recursive sum of the trapezoidal gnomon's area, (a(n) + a(n-1))*1, from 1 to n, gives n^5.
The general formula, changing the exponent for all the Y = X^m curves, gives infinitely many new sequences: b(m,k) = m^k - (m-1)^k - b(m-1,k). The same can be done for all the following derivatives. For the smallest exponents k of Y = X^k the sequences are known: for k=3 the sequence is A032528, for k=4 the sequence is A007588, and k=5 corresponds to this sequence.

Examples

			For n=2, a(2) = (2^5 - 1^5) - (1) = 30.
		

Programs

  • Mathematica
    LinearRecurrence[{4,-5,0,5,-4,1},{1,30,181,600,1501,3150},40] (* Harvey P. Dale, May 03 2024 *)
  • PARI
    Vec(x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/((1 + x)*(1 - x)^5) + O(x^30)) \\ Colin Barker, Feb 27 2017

Formula

G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/((1 + x)*(1 - x)^5).
a(n) = (5*(n^2 - 1)*n^2 - (-1)^n + 1)/2.
a(n) = (n^5-(n-1)^5) - a(n-1).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>6. - Colin Barker, Feb 27 2017
Previous Showing 31-37 of 37 results.