cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A111865 Expansion of g.f. Product_{k>=1} 1/(1-x^sigma(k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 7, 9, 11, 14, 17, 24, 29, 36, 46, 57, 66, 85, 103, 125, 151, 182, 213, 264, 310, 368, 440, 524, 604, 724, 849, 998, 1164, 1363, 1573, 1854, 2136, 2481, 2879, 3336, 3807, 4427, 5079, 5844, 6698, 7695, 8754, 10072, 11451, 13075, 14898, 16988
Offset: 0

Views

Author

Jon Perry, Nov 23 2005

Keywords

Comments

Number of partitions of n into parts of size p = sigma(k) for some k, when there are A054973(p) kinds of part p.

Examples

			a(6) = 5 : We have sigma(1)=1, sigma(2)=3, sigma(3)=4, sigma(5)=6 so 111111, 1113, 114, 6 and 33.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(coeff(series(mul(1/(1-x^sigma(k)),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, May 31 2018
  • Mathematica
    CoefficientList[ Series[Product[1/(1 - x^DivisorSigma[1, k]), {k, 47}], {x, 0, 52}], x] (* Robert G. Wilson v, Nov 25 2005 *)
  • PARI
    lista(nn) = Vec(prod(k=1, nn, 1/(1-x^sigma(k))+ O(x^nn))) \\ Michel Marcus, May 30 2018

Formula

G.f.: Product_{k>=1} 1/(1-x^sigma(k)).

Extensions

More terms from Robert G. Wilson v, Nov 25 2005
a(0)=1 prepended by Seiichi Manyama, May 30 2018

A202275 Differences between A074753 (number of integers k such that sigma(k) <= n) and A202276 (number of integers k <= n such that sigma(x) = k has no solution); sigma = A000203.

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 3, 4, 3, 2, 1, 3, 4, 5, 6, 5, 4, 6, 5, 6, 5, 4, 3, 6, 5, 4, 3, 4, 3, 4, 6, 8, 7, 6, 5, 6, 5, 6, 7, 8, 7, 10, 9, 10, 9, 8, 7, 10, 9, 8, 7, 6, 5, 7, 6, 8, 9, 8, 7, 10, 9, 10, 11, 10, 9, 8, 7, 8, 7, 6, 5, 10, 9, 10, 9, 8, 7, 8, 7, 9, 8, 7, 6, 9
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

Conjectures: Max a(n) = 15 for n = 195, 403, 434. For n >= 687, a(n) < 0.
First term < 0: a(538) = -1.

Crossrefs

Formula

a(n) = A074753(n) - A202276(n).

A202276 Number of integers k <= n such that sigma(x) = k has no solution, sigma = A000203.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 15, 15, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 28, 29, 29, 30, 30, 30, 31, 32, 32, 33, 33, 33, 34, 35, 36, 37, 37, 38, 39
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

Partial sums of A175253.

Examples

			a(9) = 3 because sigma(x) = k has no solution for k = 2, 5 and 9.
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{t = Table[0, {max}]}, t[[Complement[Range[max], Table[ DivisorSigma[1, n], {n, 1, max}]]]] = 1; Accumulate@ t]; seq[100] (* Amiram Eldar, Dec 20 2024 *)

A206030 Numbers m with at least two divisors d with the same sigma(d).

Original entry on oeis.org

66, 132, 170, 198, 210, 260, 264, 322, 330, 340, 345, 396, 400, 420, 456, 462, 510, 520, 528, 594, 630, 644, 651, 660, 680, 690, 726, 780, 792, 800, 820, 840, 850, 858, 912, 924, 966, 990, 1020, 1035, 1040, 1050, 1056, 1066, 1092, 1122, 1155, 1160, 1188
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Complement of sequence contains numbers whose divisors d have distinct values of sigma(d).

Examples

			66 is in sequence because two divisors d (6 and 11) of 66 have the same sigma(d) = 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1200], Length[DivisorSigma[1, Divisors[#]]] != Length[Union[DivisorSigma[1, Divisors[#]]]] &] (* T. D. Noe, Feb 10 2012 *)
    [Range[1200],Max[Tally[DivisorSigma[1,Divisors[#]]][[;;,2]]]>1&] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    ok(n)={my(v=apply(sigma, divisors(n))); #Set(v) < #v} \\ Andrew Howroyd, Aug 01 2018

A159953 Values in A054973 larger than 1.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 5, 2, 3, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 6, 4, 2, 2, 5, 2, 5, 3, 3, 3, 7, 3, 6, 2, 3, 2, 2, 6, 3, 2, 4, 2, 3, 8, 2, 9, 4, 2, 6, 2, 2, 2, 2, 2, 2, 4, 8, 4, 2, 2, 2, 3, 4, 3, 9, 2, 10, 2, 3, 2, 4, 4, 3, 4, 2, 2, 11, 5, 2, 5, 2, 3, 4, 2, 2, 3, 5, 3, 8, 7, 4, 15, 2, 4, 7, 8
Offset: 1

Views

Author

Jaroslav Krizek, Apr 27 2009

Keywords

Comments

This is a survey of how many solutions the equation sigma(x)=k has for k in A159886, or about the lengths of the plateaus in A007609.

Crossrefs

Programs

  • Maple
    read("transforms3") ; a054973 := BFILETOLIST("b054973.txt") ;
    for i from 1 to 1000 do if op(i,a054973) > 1 then printf("%d,", op(i,a054973)) ; fi; od: # R. J. Mathar, May 22 2009
  • Mathematica
    b[n_] := Sum[Boole[DivisorSigma[1, k] == n], {k, 1, n}];
    Select[Array[b, 1000], # > 1&] (* Jean-François Alcover, Apr 06 2020 *)
  • PARI
    list(lim) = {my(s); for(k = 1, lim, s = invsigmaNum(k); if(s > 1, print1(s, ", ")));} \\ Amiram Eldar, Dec 25 2024, using Max Alekseyev's invphi.gp

Extensions

Edited and extended by R. J. Mathar, May 22 2009

A175253 a(n) = characteristic function of numbers k such that A000203(m) = k has no solution for any m, where A000203(m) = sum of divisors of m.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2010

Keywords

Comments

a(n) = characteristic function of numbers from A007369(n). a(n) = 1 if A000203(m) not equal to n for any m, else 0. a(n) = 1 for such n that A054973(n) = 0. a(n) = 0 for such n that A054973(n) >= 1. a(n) + A175192(n) = A000012(n).

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{t = Table[0, {max}]}, t[[Complement[Range[max], Table[ DivisorSigma[1, n], {n, 1, max}]]]] = 1; t]; seq[100] (* Amiram Eldar, Mar 22 2024 *)

Extensions

More terms from Jaroslav Krizek, Dec 25 2011.

A202277 Numbers m such that number of integers k such sigma(k) <= m (A074753) is equal to number of integers k <= m such that sigma(x) = k has no solution (A202276).

Original entry on oeis.org

2, 537, 639, 647, 653, 655, 657, 661, 663, 672, 674, 684, 686
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

Numbers m such that A074753(m) - A202276(m) = 0.
Numbers m such that A202275(m) = 0 (see graph of A202275).
Conjecture: sequence is finite with 13 terms.

Crossrefs

A162967 Values taken by the sigma(sigma(n)) function A051027, with repetition, sorted into ascending order.

Original entry on oeis.org

1, 4, 7, 8, 12, 14, 15, 24, 24, 28, 28, 32, 32, 39, 39, 42, 56, 56, 60, 60, 60, 60, 63, 63, 72, 80, 84, 90, 91, 96, 96, 96, 96, 104, 112, 114, 120, 120, 120, 120, 124, 124, 124, 126, 128, 128, 133, 160, 168, 168, 168, 168, 171, 171, 186, 186, 195, 195, 195, 195, 195
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2009

Keywords

Comments

Removal of duplicates generates A070286. - R. J. Mathar, Jul 21 2009

Crossrefs

Cf. A007609, A002191. - R. J. Mathar, Jul 21 2009

Programs

  • PARI
    f(k) = {my(v = invsigma(k), c = 0); for(i = 1, #v, c += invsigmaNum(v[i])); c;} \\ using Max Alekseyev's invphi.gp
    list(lim) = {my(m); for(k = 1, lim, m = f(k); for(i = 1, m, print1(k, ", ")));} \\ Amiram Eldar, Dec 26 2024

A253248 Number of k <= n with A000203(k) <= A000203(n).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 8, 10, 8, 12, 10, 13, 14, 16, 13, 18, 14, 20, 19, 20, 17, 24, 20, 25, 24, 27, 19, 30, 23, 31, 29, 30, 30, 36, 25, 35, 34, 39, 30, 42, 31, 41, 41, 41, 34, 48, 38, 48, 44, 51, 36, 53, 46, 55, 48, 51, 42, 60, 43, 57, 59, 63, 52
Offset: 1

Views

Author

Robert Israel, Jun 04 2015

Keywords

Examples

			A000203(7) = 8 >= A000203(k) for k = 1,2,3,4,5,7, so a(7) = 6.
		

Crossrefs

Programs

  • Maple
    N:= 1000:
    B:= map(numtheory:-sigma,[$1..N]):
    M:= max(B):
    X:= Vector(M):
    for n from 1 to N do
      b:= B[n];
      X[b..-1]:= X[b..-1] + <(1$(M-b+1))>;
      A[n]:= X[b];
    od:
    seq(A[n],n=1..N);
  • Mathematica
    f[v_] := Count[v, ?(# <= v[[-1]] &)]; seq[lim] := Module[{v = DivisorSigma[1, Range[lim]]}, f[v[[1 ;; #]]] & /@ Range[Length[v]]]; seq[65] (* Amiram Eldar, Dec 19 2024 *)

Formula

a(n) <= n, with equality if and only if n is in A002093.
Empirically it appears that lim inf_(n -> infinity) a(n)/n = 2/3, with minimum value a(29)/29 = 19/29.
Previous Showing 11-19 of 19 results.