A037948 Duplicate of A007659.
2, 3, 5, 7, 2411
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
(* First do <Michael De Vlieger, Dec 23 2017 *)
for (n=1,1000,if(Mod(ramanujantau(n),n)==0,print1(n", "))) \\ Dana Jacobsen, Sep 06 2015
use ntheory ":all"; my @p = grep { !(ramanujan_tau($) % $) } 1..1000; say "@p"; # Dana Jacobsen, Sep 06 2015
from itertools import count, islice from sympy import divisor_sigma def A063938_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n: not -840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n, count(max(startvalue,1))) A063938_list = list(islice(A063938_gen(),25)) # Chai Wah Wu, Nov 08 2022
tau(11) = 534612 and 11 | (534612 - 1), so a(1) = 11. tau(23) = 18643272 and 23 | (18643272 - 1), so a(2) = 23. tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1), so a(3) = 691. tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1), so a(4) = 5807.
Select[Prime@ Range[10^3], Function[p, AnyTrue[RamanujanTau[p] + {-1, 1}, Divisible[#, p] &]]] (* Michael De Vlieger, Dec 30 2017 *)
isok(p) = my(rp=ramanujantau(p)); isprime(p) && !((rp-1) % p) || !((rp+1) % p); \\ Michel Marcus, Nov 07 2020
Select[Range[1000], PrimeQ[#] && Divisible[RamanujanTau[#], #+1] &] (* Amiram Eldar, Apr 14 2021 *)
isok(p) = isprime(p) && !(ramanujantau(p) % (p+1)); \\ Michel Marcus, Feb 05 2018
Select[ Prime@ Range@ 30, Mod[ RamanujanTau@#, # - 1] == 0 &] (* Robert G. Wilson v, Feb 11 2018 *)
isok(p) = isprime(p) && !(ramanujantau(p) % (p-1)); \\ Michel Marcus, Feb 05 2018
22 is a term because Ramanujan's tau(22) = 18643272 and 18643272 mod 22 = 10.
Select[ Range[ 70 ], Mod[ CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 70} ] ], 70 ], x ][ [ # ] ], # ] != 0 && ! PrimeQ[ # ] & ] (* First do *) <Dean Hickerson, Jan 03 2003 *)
tau(63001) = -80561663527802406257321747 which is prime.
Select[Range[1, 7000, 2]^2, PrimeQ@RamanujanTau@# &]
for(x=1,1000, n=(2*x+1)^2; if(isprime(abs(ramanujantau(n))), print1(n", "))) \\ Dana Jacobsen, Sep 07 2015
use ntheory ":all"; for (0..1000) { my $n = (2*$+1)**2; say $n if is_prime(abs(ramanujan_tau($n))); } # _Dana Jacobsen, Sep 07 2015
Mod[RamanujanTau@ #, #] & /@ Prime@ Range@ 80 (* Michael De Vlieger, May 27 2016 *)
a(n,p=prime(n))=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756%p \\ Charles R Greathouse IV, Jun 07 2016
from sympy import prime, divisor_sigma def A273651(n): p = prime(n) return -1680*sum(pow(i,4,p)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1,p+1>>1)) % p # Chai Wah Wu, Nov 08 2022
require 'prime' def mul(f_ary, b_ary, m) s1, s2 = f_ary.size, b_ary.size ary = Array.new(s1 + s2 - 1, 0) s10 = [s1 - 1, m].min (0..s10).each{|i| s20 = [s2 - 1, m - i].min (0..s20).each{|j| ary[i + j] += f_ary[i] * b_ary[j] } } ary end def power(ary, n, m) return [1] if n == 0 k = power(ary, n >> 1, m) k = mul(k, k, m) return k if n & 1 == 0 return mul(k, ary, m) end def A000594(n) ary = Array.new(n + 1, 0) i = 0 j, k = 2 * i + 1, i * (i + 1) / 2 while k <= n i & 1 == 1? ary[k] = -j : ary[k] = j i += 1 j, k = 2 * i + 1, i * (i + 1) / 2 end power(ary, 8, n).unshift(0)[1..n] end def A273651(n) p_ary = Prime.each.take(n) t_ary = A000594(p_ary[-1]) p_ary.inject([]){|s, i| s << t_ary[i - 1] % i} end p A273651(n)
a[n_] := Module[{p = Prime[n]}, Min[Abs[Mod[RamanujanTau[p], {-p, p}]]]]; Array[a, 100] (* Amiram Eldar, Jan 10 2025 *)
a(n) = my(p=prime(n)); abs(centerlift(Mod(ramanujantau(p), p)))
tau(191) = 2762403350592 and 2762403350592 == 95 mod 191, so a(1) = 191. tau(5399) = -616400667743946780600 and -616400667743946780600 == 2699 mod 5399, so a(2) = 5399. tau(1259393) = -600367974333827988240021654527358 and -600367974333827988240021654527358 == 629696 mod 1259393, so a(3) = 1259393.
Comments