cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 61 results. Next

A139073 Smallest prime number of the form (n+k!)/n.

Original entry on oeis.org

2, 2, 3, 7, 1009, 2, 5702401, 631, 4481, 13, 566092801, 3, 23452949585516450807808000001, 259201, 337, 2521, 3553839003727872684550301886383176323956736000000001, 41
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ k = 1; While[ ! PrimeQ[ (k! + n)/n ], k++ ]; AppendTo[ a, (k! + n)/n ], {n, 1, 100} ]; a [Corrected May 06 2008]
  • PARI
    a(n)=my(k,t);until(denominator(t=k++!/n+1)==1&&ispseudoprime(t),);t \\ Charles R Greathouse IV, Jul 19 2011

Formula

a(n) = (n + A139072(n)!)/n. - Amiram Eldar, Oct 14 2024

A139091 a(n) = largest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

17, 827, 22319071, 1718296754087, 35662591735219, 477262171871, 1609727002420791262479701, 146215297537890243023, 2020914387433686758547638152441, 1073774770807266077323
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, Last[w][[1]]], {n, 4, 16}]; a

A258866 Numbers k such that k!! - 1024 is prime.

Original entry on oeis.org

11, 17, 31, 39, 53, 93, 95, 381, 727, 867, 1229, 1573, 3161, 4293, 5635, 7077, 7093, 8861, 37401
Offset: 1

Views

Author

Robert Price, Nov 06 2015

Keywords

Comments

Corresponding primes are 9371, 34458401, ... .
a(20) > 50000.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 50000], If[#!! - 1024 > 0, PrimeQ[#!! - 1024]] &]

A259045 Numbers n such that n!! - 2^6 is prime.

Original entry on oeis.org

7, 9, 11, 17, 21, 27, 29, 39, 43, 45, 67, 145, 173, 613, 833, 1449, 1703, 1719, 2673, 19661, 36095, 37837, 37845
Offset: 1

Views

Author

Robert Price, Jun 17 2015

Keywords

Comments

a(24) > 50000.

Crossrefs

Cf. A007749, A094144, A123910, A257864 (other forms of n!!-2^k)

Programs

  • Mathematica
    Select[Range[0, 50000], #!! - 64 > 0 && PrimeQ[#!! - 64] &]
    Select[Range[4, 6000], PrimeQ[#!! - 64] &] (* Vincenzo Librandi, Jun 18 2015 *)

A259359 Numbers n such that n!!-8 is prime.

Original entry on oeis.org

5, 7, 9, 19, 41, 43, 83, 89, 91, 143, 299, 307, 341, 381, 585, 995, 1019, 1027, 2043, 4301, 6275, 11157, 11621, 12315, 17505, 24771, 30535, 38635
Offset: 1

Views

Author

Robert Price, Jun 24 2015

Keywords

Comments

Corresponding primes are 7, 97, 937, 654729067, 13113070457687988603440617, ... .
a(29) > 50000.

Crossrefs

Programs

  • Mathematica
    Select[Range[5,1000],PrimeQ[#!!-8]&]

A265114 Numbers n such that n!! - 2^8 is prime.

Original entry on oeis.org

11, 15, 21, 27, 31, 53, 59, 71, 87, 91, 99, 129, 219, 337, 507, 695, 893, 1033, 1961, 2381, 3237, 3485, 6151, 8981, 17873, 18163, 33621, 38543
Offset: 1

Views

Author

Robert Price, Dec 01 2015

Keywords

Comments

Corresponding primes are 10139, 2026769, 13749310319, 213458046676619, 191898783962510369, ...
a(29) > 50000. - Robert Price, May 08 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[8, 50000], PrimeQ[#!! - 256] &]
  • PARI
    is(n)=ispseudoprime(n!! - 2^8) \\ Anders Hellström, Dec 02 2015
    
  • PARI
    df(n) = if( n<0, 0, my(E); E = exp(x^2 / 2 + x * O(x^n)); n! * polcoeff( 1 + E * x * (1 + intformal(1 / E)), n));
    for(n=1, 1e3, if(ispseudoprime(df(n) - 2^8), print1(n , ", "))) \\  Altug Alkan, Dec 03 2015

A267029 Numbers n such that n!!! - 3^9 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

16, 17, 34, 38, 49, 62, 74, 97, 125, 137, 146, 178, 188, 235, 664, 863, 916, 1988, 2059, 2837, 5353, 5489, 7483, 9344, 12631, 13796, 17122, 23134, 30409, 33077
Offset: 1

Views

Author

Robert Price, Jan 09 2016

Keywords

Comments

Corresponding primes are 38557, 189757, 17961239276317, 3091650738156317, ... .
a(31) > 50000.

Examples

			16!3 - 3^9 = 16*13*10*7*4*1 - 19683 = 58240 - 19683 = 38557 is prime, so 16 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    Select[Range[15, 50000], PrimeQ[MultiFactorial[#, 3] - 3^9] &]
    Select[Range[12,33100],PrimeQ[Times@@Range[#,1,-3]-19683]&] (* Harvey P. Dale, Jan 25 2021 *)

A108420 Numbers k such that k!! - prime(k) is prime.

Original entry on oeis.org

14, 20, 54, 56, 144, 206, 212, 436, 1610, 4450, 4512, 5202, 6684, 14318
Offset: 1

Views

Author

Amineh Farzannia (afarzannia(AT)yahoo.com), Jul 06 2005

Keywords

Comments

There is no further term up to 8800. - Farideh Firoozbakht, Aug 19 2005

Examples

			14 is a term since 14!! - prime(14) = 645120 - 43 = 645077 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1610], PrimeQ[ #!! - Prime[ # ]] &]

Extensions

More terms from Farideh Firoozbakht, Aug 19 2005
Name corrected, term 3 removed, and a(14) from Michael S. Branicky, Jan 03 2025

A122719 Primes p such that (2p)!! - 1 is prime.

Original entry on oeis.org

2, 3, 13, 41, 59, 97, 107, 421, 1663, 22159
Offset: 1

Views

Author

Alexander Adamchuk, Sep 23 2006

Keywords

Comments

a(n) are the primes from A091415[n] = {2,3,4,8,13,32,41,45,59,97,107,364,421,...} Numbers n such that n!*2^n - 1 is prime. Corresponding primes of the form (2p)!! - 1 are {3,5,270269,26226140915375977206881249, 58431212742946338570036120182498518593749,...}
No other terms up to 3000. - Stefan Steinerberger, Sep 09 2007

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[651]],PrimeQ[(2#)!!-1]&]

Extensions

a(9) from Stefan Steinerberger, Sep 09 2007
a(10) from Robert Price, Nov 26 2013

A139090 a(n) = smallest prime divisor of the number prime(n)!/9 + 1.

Original entry on oeis.org

3, 31, 31, 23, 379, 83, 610301, 293, 101, 47, 281, 127, 278174297, 2971, 109, 5090615254324820333, 46411, 106087, 269, 288931, 59047158151, 120871, 373, 19140822523, 56595118147, 1708207, 331, 38749, 157, 2927, 2143
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[w = FactorInteger[(Prime[n]! + 9)/9]; AppendTo[a, First[w][[1]]], {n, 4, 16}]; a
    Table[FactorInteger[p!/9+1][[1,1]],{p,Prime[Range[4,35]]}] (* Harvey P. Dale, Sep 19 2020 *)

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010
Previous Showing 51-60 of 61 results. Next