cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A305316 a(n) = sqrt(5*b(n)^2 - 4) with b(n) = Fibonacci(6*n+5) = A134497(n).

Original entry on oeis.org

11, 199, 3571, 64079, 1149851, 20633239, 370248451, 6643838879, 119218851371, 2139295485799, 38388099893011, 688846502588399, 12360848946698171, 221806434537978679, 3980154972736918051, 71420983074726546239, 1281597540372340914251, 22997334743627409910279, 412670427844921037470771, 7405070366464951264563599, 132878596168524201724674011
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2018

Keywords

Comments

This sequence gives all solutions of one of two classes of positive proper solutions a(n) = a5(n) of the Pell equation a(n)^2 - 5*b(n) = -4 with b(n) = b5(n) = F(6*n+5) = A134497(n), with the Fibonacci numbers F = A000045. These solutions are obtained from the fundamental positive solution [11, 5] (to be read as a column vector) by application of positive powers of the automorphic matrix A = matrix([9, 20], [4, 9]) of determinant +1.
The other class of positive proper solutions is obtained similarly from the fundamental solution [1,1] and is given by [a1(n), b1(n)], with a1(n) = A305315(n) and b1(n) = A134493(n) = F(6*n+1).
The remaining positive solutions are improper and are obtained by application of positive powers of the same matrix A on the fundamental improper solution [4, 2]. They are given by [a3(n), b3(n)], with a3(n) = F(6*n+3) = 4* A049629(n) and b3(n) = A134495(n) = 2*A007805(n).
For the explicit form of powers of the automorphic matrix A in terms of Chebyshev polynomials S(n, 18) see a comment in A305315.
The relation to a proof using this Pell equation of the well known fact that each odd-indexed Fibonacci number appears as largest member in Markoff (Markov) triples with smallest member 1 see also A305315.

Examples

			See A305315 for the three classes of solutions of this Pell equation
		

Crossrefs

Programs

  • Magma
    I:=[11, 199]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Jul 22 2018
  • Mathematica
    f[n_] := Sqrt[5 Fibonacci[6 n + 5]^2 - 4]; Array[f, 17, 0] (* or *)
    CoefficientList[ Series[(x + 11)/(x^2 - 18x + 1), {x, 0, 18}], x] (* or *)
    LinearRecurrence[{18, -1}, {11, 199}, 18] (* Robert G. Wilson v, Jul 21 2018 *)
  • PARI
    x='x+O('x^99); Vec((11+x)/(1-18*x+x^2)) \\ Altug Alkan, Jul 11 2018
    

Formula

a(n) = sqrt(5*(F(6*n+5))^2 - 4), with F(6*n+5) = A134497(n), n >= 0.
a(n) = 11*S(n, 18) + S(n-1, 18), n >= 0, with the Chebyshev polynomials S(n, 18) = A049660(n+1) and S(-1, 18) = 0.
a(n) = 18*a(n-1) - a(n-2), n >= 1, with a(-1) = -1 and a(0) = 11.
G.f.: (11 + x)/(1 - 18*x + x^2).

A307937 Numbers that can be written as the sum of four or more consecutive squares in more than one way.

Original entry on oeis.org

3655, 3740, 4510, 4760, 5244, 5434, 5915, 7230, 7574, 8415, 11055, 11900, 12524, 14905, 17484, 18879, 19005, 19855, 20449, 20510, 21790, 22806, 23681, 25580, 25585, 27230, 27420, 28985, 31395, 34224, 37114, 39606, 41685, 42419, 44919, 45435, 45955, 48026, 48139, 48225, 49015, 53941, 57164, 62006
Offset: 1

Views

Author

Robert Israel, May 06 2019

Keywords

Comments

Numbers that are in A174071 in two or more ways.
The first number with more than two representations as a sum of four or more consecutive positive squares is 147441 = 18^2 + ... + 76^2 = 29^2 + ... + 77^2 = 85^2 + ... + 101^2.
If x = 2*A049629(n) and y = A007805(n) for n >= 1 (satisfying the Pell equation x^2 - 5*y^2 = -1), then the sequence contains 5*x^2+10 = Sum_{(5*y-3)/2 <= i <= (5*y+3)/2} i^2 = Sum_{x-2 <= i <= x+2} i^2 = 25*y^2 + 5.

Examples

			a(1) = 3655 is in the sequence because 3655 = 8^2 + ... + 22^2 = 25^2 + ... + 29^2.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    R:= 'R':
    dups:= NULL:
    for m from 4 while m*(m+1)*(2*m+1)/6 <= N do
       for k from 1 do
           v:= m*(6*k^2 + 6*k*m + 2*m^2 - 6*k - 3*m + 1)/6;
           if v > N then break fi;
           if assigned(R[v]) then
             dups:= dups, v;
           else
             R[v]:= [k, k+m-1];
           fi;
    od od:
    sort(convert({dups},list));
  • Mathematica
    M = 10^5;
    dups = {}; Clear[rQ]; rQ[_] = False;
    For[m = 4, m(m+1)(2m+1)/6 <= M, m++, For[k = 1, True, k++, v = m(6k^2 + 6k m + 2m^2 - 6k - 3m + 1)/6; If[v > M, Break[]]; If[rQ[v], AppendTo[dups, v], rQ[v] = True]]];
    dups // Sort (* Jean-François Alcover, May 07 2019, after Robert Israel *)

A324178 Integers k such that floor(sqrt(k)) + floor(sqrt(k/5)) divides k.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 24, 28, 35, 40, 45, 50, 60, 66, 77, 91, 112, 128, 153, 190, 200, 220, 231, 276, 312, 338, 378, 406, 435, 450, 480, 496, 512, 561, 578, 648, 703, 722, 741, 780, 800, 840, 882, 903, 946, 968, 990, 1058, 1152, 1176, 1250, 1300, 1352, 1378
Offset: 1

Views

Author

Jinyuan Wang, Mar 09 2019

Keywords

Comments

This sequence is infinite for the same reason that A324175 is: if x > y satisfies x^2 - 5*y^2 = -1 (x=A075796(j), y=A007805(j-1), j>0), then x < 5*y. Let k = 5*y^2 + m. By the pigeonhole principle there exists a number m belonging to [0, 2*x - 1] such that x + y | 5*y^2 + m, so such a k is a term.

Crossrefs

Programs

  • Mathematica
    Select[Range[1378], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/5]] == 0 &] (* Giovanni Resta, Apr 05 2019 *)
  • PARI
    is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/5))) == 0;

A075869 Numbers k such that 5*k^2 - 9 is a square.

Original entry on oeis.org

3, 51, 915, 16419, 294627, 5286867, 94868979, 1702354755, 30547516611, 548152944243, 9836205479763, 176503545691491, 3167227616967075, 56833593559715859, 1019837456457918387, 18300240622682815107
Offset: 1

Views

Author

Gregory V. Richardson, Oct 16 2002

Keywords

Comments

Lim. n-> Inf. a(n)/a(n-1) = phi^6 = 9 + 4*sqrt(5).

References

  • A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Cf. 3*A007805.

Programs

  • Mathematica
    LinearRecurrence[{18, -1}, {3, 51}, 20] (* Harvey P. Dale, Dec 27 2018 *)

Formula

a(n) = 3*sqrt(5)/10*((2+sqrt(5))^(2*n-1)-(2-sqrt(5))^(2*n-1)) = 18*a(n-1) - a(n-2).
G.f.: 3*x*(1-x)/(1-18*x+x^2). [Philippe Deléham, Nov 17 2008; corrected by Georg Fischer, May 15 2019]

A269028 a(n) = 40*a(n - 1) - a(n - 2) for n>1, a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 39, 1559, 62321, 2491281, 99588919, 3981065479, 159143030241, 6361740144161, 254310462736199, 10166056769303799, 406387960309415761, 16245352355607326641, 649407706263983649879, 25960062898203738668519, 1037753108221885563090881
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = k*b(n - 1) - b(n - 2) with n>1 and b(0)=1, b(1)=1, is (1 - (k - 1)*x)/(1 - k*x +x^2). This recurrence gives the closed form b(n) = (2^( -n - 1)*((k - 2)*(k - sqrt(k^2 - 4))^n + sqrt(k^2 - 4)*(k - sqrt(k^2 - 4))^n - (k - 2)*(sqrt(k^2 - 4) + k)^n + sqrt(k^2 - 4)*(sqrt(k^2 - 4) + k)^n))/sqrt(k^2 - 4).

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else 40*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 19 2016
  • Mathematica
    Table[Cosh[n Log[20 + Sqrt[399]]] - Sqrt[19/21] Sinh[n Log[20 + Sqrt[399]]], {n, 0, 17}]
    Table[(2^(-n - 2) (38 (40 - 2 Sqrt[399])^n + 2 Sqrt[399] (40 - 2 Sqrt[399])^n - 38 (40 + 2 Sqrt[399])^n + 2 Sqrt[399] (40 + 2 Sqrt[399])^n))/Sqrt[399], {n, 0, 17}]
    LinearRecurrence[{40, -1}, {1, 1}, 17]

Formula

G.f.: (1 - 39*x)/(1 - 40*x + x^2).
a(n) = cosh(n*log(20 + sqrt(399))) - sqrt(19/21)*sinh(n*log(20 + sqrt(399))).
a(n) = (2^(-n - 2)*(38*(40 - 2*sqrt(399))^n + 2*sqrt(399)*(40 - 2*sqrt(399))^n - 38*(40 + 2*sqrt(399))^n + 2*sqrt(399)*(40 + 2*sqrt(399))^n))/sqrt(399).
Sum_{n>=0} 1/a(n) = 2.0262989201139499769986...

A278475 a(n) = floor(phi^7*a(n-1)) for n>0, a(0) = 1, where phi is the golden ratio (A001622).

Original entry on oeis.org

1, 29, 841, 24417, 708933, 20583473, 597629649, 17351843293, 503801085145, 14627583312497, 424703717147557, 12331035380591649, 358024729754305377, 10395048198255447581, 301814422479162285225, 8763013300093961719105, 254429200125204052139269, 7387209816931011473757905
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = floor(phi^k*b(n - 1)) with n>0 and b(0) = 1, is (1 - x)/(1 - (phi^k + (-phi)^(-k))*x + x^2) if k is even, and (1 - x - x^2)/((1 - x)*(1 - (phi^k + (-phi)^(-k))*x - x^2)) if k is odd.

Crossrefs

Cf. A001622.
Cf. similar sequences with recurrence relation b(n) = floor(phi^k*b(n-1)) for n>0, b(0) = 1: A000012 (k = 1), A001519 (k = 2), A024551 (k = 3), A049685 (k = 4), A214993 (k = 5), A007805 (k = 6), this sequence (k = 7).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == Floor[GoldenRatio^7 a[n - 1]]}, a, {n, 17}]
    LinearRecurrence[{30, -28, -1}, {1, 29, 841}, 18]
  • PARI
    Vec( (1 - x - x^2)/((1 - x)*(1 - 29*x - x^2)) + O(x^50) ) \\ G. C. Greubel, Nov 24 2016

Formula

G.f.: (1 - x - x^2)/((1 - x)*(1 - 29*x - x^2)).
a(n) = 30*a(n-1) - 28*a(n-2) - a(n-3).
a(n) = ((-29 - 13*sqrt(5))^(-n)*(-7*(407 + 182*sqrt(5))*2^(n+3) + 13*(1885 + 843*sqrt(5))*(-29 - 13*sqrt(5))^n + 28*(25319 + 11323*sqrt(5))*(-843 - 377*sqrt(5))^n))/(377*(1885 + 843*sqrt(5))).
Previous Showing 31-36 of 36 results.