A115278
Number of partitions of {1,...,2*n} into even sized blocks such that no block size is repeated.
Original entry on oeis.org
1, 1, 1, 16, 29, 256, 14422, 49141, 490429, 10758400, 1797335306, 9458619391, 133756636598, 2528529510391, 137864810180749, 53441183229799381, 410251032050409469, 7615997734377068128, 167055180095977694194, 6741819165851219788075, 738863335901972011745434
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-2), j=0..min(1, n/i))))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!* b[n - i*j, i - 2], {j, 0, Min[1, n/i]}]]]; a[n_] := b[2 n, 2 n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)
A262072
Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), n>=0, ceiling((sqrt(1+8*n)-1)/2)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 3, 1, 4, 1, 10, 5, 1, 60, 15, 6, 1, 140, 21, 7, 1, 280, 224, 28, 8, 1, 1260, 630, 336, 36, 9, 1, 12600, 3780, 1050, 480, 45, 10, 1, 34650, 7392, 1650, 660, 55, 11, 1, 110880, 74844, 12672, 2475, 880, 66, 12, 1, 360360, 276276, 140712, 20592, 3575, 1144, 78, 13, 1
Offset: 0
Triangle T(n,k) begins:
: 1;
: 1;
: 1;
: 3, 1;
: 4, 1;
: 10, 5, 1;
: 60, 15, 6, 1;
: 140, 21, 7, 1;
: 280, 224, 28, 8, 1;
: 1260, 630, 336, 36, 9, 1;
: 12600, 3780, 1050, 480, 45, 10, 1;
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, binomial(n, i)*b(n-i, i-1))))
end:
T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
seq(seq(T(n,k), k=ceil((sqrt(1+8*n)-1)/2)..n), n=0..14);
-
b[n_, i_] := b[n, i] = If[i*(i+1)/2n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k == 0, 0, b[n, k-1]]; Table[T[n, k], {n, 0, 14}, {k, Ceiling[(Sqrt[1+8*n]-1)/2], n}] // Flatten (* Jean-François Alcover, Feb 04 2017, translated from Maple *)
A275679
Number of set partitions of [n] with alternating block size parities.
Original entry on oeis.org
1, 1, 1, 4, 3, 20, 43, 136, 711, 1606, 12653, 36852, 250673, 1212498, 6016715, 45081688, 196537387, 1789229594, 8963510621, 76863454428, 512264745473, 3744799424978, 32870550965259, 219159966518160, 2257073412153459, 15778075163815474, 165231652982941085
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 3: 1234, 1|23|4, 1|24|3.
a(5) = 20: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 14|2|35, 15|2|34.
Cf.
A003724,
A005046,
A007837,
A038041,
A275309,
A275310,
A275311,
A275312,
A275313,
A286076,
A361804.
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(
`if`((i+t)::odd, b(n-i, 1-t)*binomial(n-1, i-1), 0), i=1..n))
end:
a:= n-> `if`(n=0, 1, b(n, 0)+b(n, 1)):
seq(a(n), n=0..35);
-
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[If[OddQ[i+t], b[n-i, 1-t] * Binomial[n-1, i-1], 0], {i, 1, n}]]; a[n_] := If[n==0, 1, b[n, 0] + b[n, 1]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A305547
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k/k!).
Original entry on oeis.org
1, 1, 2, 8, 37, 182, 1039, 7149, 56382, 479220, 4280247, 40406984, 410453366, 4539623168, 54431372233, 695801259947, 9312538336475, 128985882874288, 1842668013046405, 27238267120063415, 419396473955088310, 6769168354222927254, 114837651830425810381, 2042782103293394499566
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
d=numtheory[divisors](k))*(n-1)!/(n-k)!*b(n-k), k=1..n))
end:
a:= n-> add(Stirling2(n, k)*b(k), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
-
nmax = 23; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) (Exp[x] - 1)^(j k)/((j!)^k k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, -# (-#!)^(-k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 23}]
A309992
Triangle T(n,k) whose n-th row lists in increasing order the multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n into distinct parts; n >= 0, 1 <= k <= A000009(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 4, 1, 5, 10, 1, 6, 15, 60, 1, 7, 21, 35, 105, 1, 8, 28, 56, 168, 280, 1, 9, 36, 84, 126, 252, 504, 1260, 1, 10, 45, 120, 210, 360, 840, 1260, 2520, 12600, 1, 11, 55, 165, 330, 462, 495, 1320, 2310, 4620, 6930, 27720
Offset: 0
For n = 5 there are 3 partitions of 5 into distinct parts: [5], [4,1], [3,2]. So row 5 contains M(5;5) = 1, M(5;4,1) = 5 and M(5;3,2) = 10.
Triangle T(n,k) begins:
1;
1;
1;
1, 3;
1, 4;
1, 5, 10;
1, 6, 15, 60;
1, 7, 21, 35, 105;
1, 8, 28, 56, 168, 280;
1, 9, 36, 84, 126, 252, 504, 1260;
1, 10, 45, 120, 210, 360, 840, 1260, 2520, 12600;
1, 11, 55, 165, 330, 462, 495, 1320, 2310, 4620, 6930, 27720;
...
Rightmost terms of rows give
A290517.
-
g:= proc(n, i) option remember; `if`(i*(i+1)/2binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]]))
end:
T:= n-> sort(g(n$2))[]:
seq(T(n), n=0..14);
-
g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[ Binomial[n, i] # & /@ g[n-i, Min[n-i, i-1]], g[n, i-1]]]];
T[n_] := Sort[g[n, n]];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Jan 27 2021, after Alois P. Heinz *)
A361865
Number of set partitions of {1..n} such that the mean of the means of the blocks is an integer.
Original entry on oeis.org
1, 0, 3, 2, 12, 18, 101, 232, 1547, 3768, 24974, 116728, 687419, 3489664, 26436217, 159031250, 1129056772
Offset: 1
The set partition y = {{1,4},{2,5},{3}} has block-means {5/2,7/2,3}, with mean 3, so y is counted under a(5).
The a(1) = 1 through a(5) = 12 set partitions:
{{1}} . {{123}} {{1}{234}} {{12345}}
{{13}{2}} {{123}{4}} {{1245}{3}}
{{1}{2}{3}} {{135}{24}}
{{15}{234}}
{{1}{234}{5}}
{{12}{3}{45}}
{{135}{2}{4}}
{{14}{25}{3}}
{{15}{24}{3}}
{{1}{24}{3}{5}}
{{15}{2}{3}{4}}
{{1}{2}{3}{4}{5}}
For median instead of mean we have
A361864.
A308037 counts set partitions whose block-sizes have integer mean.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],IntegerQ[Mean[Mean/@#]]&]],{n,6}]
A371788
Triangle read by rows where T(n,k) is the number of set partitions of {1..n} with exactly k distinct block-sums.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 8, 4, 1, 0, 2, 19, 24, 6, 1, 0, 2, 47, 95, 49, 9, 1, 0, 6, 105, 363, 297, 93, 12, 1, 0, 12, 248, 1292, 1660, 753, 158, 16, 1, 0, 11, 563, 4649, 8409, 5591, 1653, 250, 20, 1, 0, 2, 1414, 15976, 41264, 38074, 15590, 3249, 380, 25, 1
Offset: 0
The set partition {{1,3},{2},{4}} has two distinct block-sums {2,4} so is counted under T(4,2).
Triangle begins:
1
0 1
0 1 1
0 2 2 1
0 2 8 4 1
0 2 19 24 6 1
0 2 47 95 49 9 1
0 6 105 363 297 93 12 1
0 12 248 1292 1660 753 158 16 1
0 11 563 4649 8409 5591 1653 250 20 1
0 2 1414 15976 41264 38074 15590 3249 380 25 1
Row n = 4 counts the following set partitions:
. {{1,4},{2,3}} {{1},{2,3,4}} {{1},{2},{3,4}} {{1},{2},{3},{4}}
{{1,2,3,4}} {{1,2},{3},{4}} {{1},{2,3},{4}}
{{1,2},{3,4}} {{1},{2,4},{3}}
{{1,3},{2},{4}} {{1,4},{2},{3}}
{{1,3},{2,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
{{1,3,4},{2}}
A version for integer partitions is
A116608.
For block lengths instead of sums we have
A208437.
A008277 counts set partitions by length.
A275780 counts set partitions with distinct block-sums.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]], Length[Union[Total/@#]]==k&]],{n,0,5},{k,0,n}]
A097522
Triangle read by rows giving the 246 multinomials described by A005651(5) related to Young tableau and Kostka numbers.
Original entry on oeis.org
1, 16, 1, 25, 12, 1, 36, 15, 8, 1, 25, 18, 10, 8, 1, 16, 10, 6, 5, 4, 1, 1, 4, 5, 6, 5, 4, 1
Offset: 1
Triangle is
1;
16, 1;
25, 12, 1;
36, 15, 8, 1;
25, 18, 10, 8, 1;
16, 10, 6, 5, 4, 1;
1, 4, 5, 6, 5, 4, 1;
- R. Stanton, Constructive Combinatorics, 19856, page 83.
A115275
Number of partitions of {1,...,n} into blocks such that no block size is repeated more than 3 times.
Original entry on oeis.org
1, 1, 2, 5, 14, 51, 187, 820, 3670, 18191, 97917, 554500, 3334465, 20871592, 138440031, 972083845, 6985171390, 52194795327, 412903730293, 3313067916192, 28017395030419, 241504438776956, 2189375704925081, 19771679215526507, 187677937412341677
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..min(3, n/i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 17 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i-1], {j, 0, Min[3, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
A183229
G.f.: Sum_{n>=0} a(n)*x^n/n!^2 = Product_{n>=1} (1 + x^n/n!^2).
Original entry on oeis.org
1, 1, 1, 10, 17, 126, 3862, 12741, 110609, 1929430, 167593826, 845443941, 11064102326, 178820437901, 7538334414717, 1483432379403435, 10962589471724049, 189591619730952006, 3827839859607324106
Offset: 0
G.f.: A(x) = 1 + x + x^2/2!^2 + 10*x^3/3!^2 + 17*x^4/4!^2 +...
A(x) = (1 + x)*(1 + x^2/2!^2)*(1 + x^3/3!^2)*(1 + x^4/4!^2)*...
Comments