cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A182966 E.g.f.: A(x) = Product_{n>=1} (1 + 3*x^n/n)^n.

Original entry on oeis.org

1, 3, 6, 72, 342, 3330, 36720, 366660, 4974480, 67178160, 1043189280, 16836906240, 303306806880, 5705780240160, 114832957599360, 2475901844095680, 55754442891987840, 1331875774475326080, 33292197644365820160
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 6*x^2/2! + 72*x^3/3! + 342*x^4/4! +...
A(x) = (1+3x)*(1+3x^2/2)^2*(1+3x^3/3)^3*(1+3x^4/4)^4*(1+3x^5/5)^5*...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + 3*x^k/k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n,k=3)=n!*polcoeff(prod(m=1,n,(1+k*x^m/m+x*O(x^n))^m),n)}

A182967 E.g.f.: A(x) = Product_{n>=1} (1 + 4*x^n/n)^n.

Original entry on oeis.org

1, 4, 8, 120, 576, 6240, 75840, 772800, 11585280, 163914240, 2694558720, 45947489280, 876665180160, 17329568256000, 364677585592320, 8306018798837760, 195321474697789440, 4892032896606535680
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + 4*x + 8*x^2/2! + 120*x^3/3! + 576*x^4/4! +...
A(x) = (1+4x)*(1+4x^2/2)^2*(1+4x^3/3)^3*(1+4x^4/4)^4*(1+4x^5/5)^5*...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Product[(1+4 x^n/n)^n,{n,nn}],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 11 2020 *)
  • PARI
    {a(n,k=4)=n!*polcoeff(prod(m=1,n,(1+k*x^m/m+x*O(x^n))^m),n)}

A308338 Expansion of e.g.f. exp(-1 + Product_{k>=1} (1 + x^k/k)).

Original entry on oeis.org

1, 1, 2, 9, 44, 270, 2064, 17682, 171296, 1867968, 22470840, 294493320, 4195969392, 64416698112, 1059685905264, 18609306423120, 347179119075840, 6855335163907200, 142889687354283264, 3133647091691585280, 72124075333003155840, 1738384773846440146560
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[Product[(1 + x^k/k), {k, 1, nmax}] - 1], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A007838(k)*a(n-k).

A317166 Number of permutations of [n] with distinct lengths of increasing runs.

Original entry on oeis.org

1, 1, 1, 5, 7, 27, 241, 505, 1975, 10241, 188743, 460545, 2323679, 10836141, 85023209, 2734858573, 8010483015, 45714797671, 243112435345, 1632532938001, 15831051353773, 892173483721887, 2978105991739613, 19855526019022967, 113487352591708591
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= (n, s)-> `if`(n in s, 0, 1):
    b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
          `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
           , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
        end:
    a:= n-> b(n, 0$2, {}):
    seq(a(n), n=0..24);
  • Mathematica
    g[n_, s_] := If[MemberQ[s, n], 0, 1];
    b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
         If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
         {j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
    a[n_] := b[n, 0, 0, {}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)

Formula

a(A000217(n)) = A317165(n).

A318694 Expansion of e.g.f. Product_{i>=1, j>=1} (1 + x^(i*j)/(i*j)).

Original entry on oeis.org

1, 1, 2, 10, 40, 248, 1868, 14516, 131920, 1409040, 15697872, 191687472, 2663239104, 37878672960, 582357866400, 9898540886880, 172534018584960, 3192686545714560, 63844374067107840, 1309775114921541120, 28512040933544970240, 656888836504576112640, 15495311684125737031680
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^k/k)^tau(k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[(1 + x^(i j)/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + x^k/k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-d)^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-d)^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

Formula

E.g.f.: Product_{k>=1} (1 + x^k/k)^tau(k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-d)^(1-k/d)*tau(d) ) * x^k/k).

A326855 E.g.f.: Product_{k>=1} (1 + x^(4*k-1) / (4*k-1)).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 720, 0, 0, 172800, 3628800, 0, 0, 2641766400, 87178291200, 0, 0, 225422681702400, 6402373705728000, 0, 221172909834240000, 30424079849619456000, 1124000727777607680000, 0, 49241936645495193600000, 11321261082950211993600000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ Pi * n! / (exp(gamma/4) * Gamma(1/4)^2 * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326856 E.g.f.: Product_{k>=1} (1 + x^(4*k-3) / (4*k-3)).

Original entry on oeis.org

1, 1, 0, 0, 0, 24, 144, 0, 0, 40320, 403200, 0, 0, 479001600, 8643317760, 29059430400, 0, 20922789888000, 475108274995200, 1871463083212800, 0, 2432902008176640000, 76354225980899328000, 525098781423304704000, 0, 620448401733239439360000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Comments

In general, if c > 0, mod(d,c) <> 0 and e.g.f. = Product_{k>=1} (1 + x^(c*k+d) / (c*k+d)), then a(n) ~ n! * Gamma(1 + d/c) / (c^(1/c) * exp(gamma/c) * Gamma(1/c) * Gamma(1 + (d+1)/c) * n^(1 - 1/c)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ n! / (sqrt(2*Pi) * exp(gamma/4) * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620.

A326858 E.g.f.: Product_{k>=1} (1 + x^(3*k-2) / (3*k-2)).

Original entry on oeis.org

1, 1, 0, 0, 6, 30, 0, 720, 5760, 0, 362880, 5417280, 17107200, 479001600, 8885479680, 32691859200, 1307674368000, 34151856076800, 214585052774400, 6402373705728000, 192796754895360000, 1542202547010048000, 55105230485200896000, 1944933030182596608000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ n! / (3^(1/3) * Gamma(2/3) * exp(gamma/3) * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326865 G.f.: Product_{k>=1} (1 + x^k/k^3) = Sum_{n>=0} a(n)*x^n/n!^3.

Original entry on oeis.org

1, 1, 1, 35, 728, 48824, 7170984, 1418111064, 479963197440, 235727037775872, 170423013422592000, 163854260184125952000, 214343327259234349056000, 360795240553638133592064000, 778954481701636984110452736000, 2095759092922096320907078496256000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+x^k/k^3), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^3

Formula

a(n) ~ c * (n-1)!^3, where c = A073017 = Product_{k>=1} (1 + 1/k^3) = cosh(sqrt(3)*Pi/2)/Pi = 2.428189792098870328736...

A335637 Expansion of e.g.f. Product_{k>0} (1 + sin(x)^k / k).

Original entry on oeis.org

1, 1, 1, 4, 10, 25, 210, 978, 2336, 25265, 361424, 1557752, -1098528, 140915385, 2093367328, 10484632486, 133131785728, -1343478380255, -8738565516288, 1790935681747980, 3245598828836864, -592809746388403495, 6832010190766985216, 179327221659613996634, -5310378915096702812160
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 24; Range[0, max]! * CoefficientList[Series[Product[1 + Sin[x]^k/k, {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 03 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, 1+sin(x)^k/k)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, (-1)^(i+1)*sin(x)^(i*j)/(i*j^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} (-1)^(i+1)*sin(x)^(i*j)/(i*j^i) ).
Previous Showing 21-30 of 46 results. Next