cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A364283 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length different from its own as an element.

Original entry on oeis.org

1, 0, 0, 1, 2, 12, 60, 408, 2640, 24480, 208080, 2262960, 23950080, 307359360, 3835641600, 57400358400, 825160089600, 13909727462400, 229664981145600, 4310966499840000, 79428141112320000, 1658163790483200000, 33795850208440320000, 770528520983789568000
Offset: 0

Views

Author

Alois P. Heinz, Jul 17 2023

Keywords

Examples

			a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4),
   (124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:
    a:= proc(m) option remember; local b; b:=
          proc(n, i, p) option remember; `if`(i*(i+1)/2
    				

A382781 Sum of GCD of cycle lengths over all permutations of [n] with distinct cycle lengths.

Original entry on oeis.org

0, 1, 2, 9, 32, 170, 1164, 7434, 62880, 582336, 5875200, 60041520, 841501440, 9440926560, 141618778560, 2222190784800, 34862691548160, 543348318159360, 11173101312844800, 186494289764106240, 4219768887634944000, 86094733814301542400, 1834643656963469721600
Offset: 0

Views

Author

Alois P. Heinz, May 11 2025

Keywords

Examples

			a(3) = 9 = 3+3+1+1+1: (123), (132), (1)(23), (13)(2), (12)(3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..22);

A212789 Number of endofunctions on [n] with distinct cycle lengths.

Original entry on oeis.org

1, 1, 3, 20, 186, 2229, 32790, 572018, 11541600, 264370473, 6776462320, 192163455384, 5972728750560, 201906797867085, 7375152706023648, 289473254317393110, 12149690892777901568, 543010240381452000273, 25746662043469525754880, 1290829803802550504743036
Offset: 0

Views

Author

Geoffrey Critzer, May 27 2012

Keywords

Examples

			a(3)=20 because there are 27 functions f:{1,2,3}->{1,2,3} but 7 of these have at least two cycles of equal length: (1,2,3);(1,2,1);(1,2,2);(1,1,3);(1,3,3);(2,2,3)(3,2,3) where the functions are represented by their values.
		

Crossrefs

Cf. A241980.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..min(1, n/i))))
        end:
    a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 10 2014
  • Mathematica
    nn = 20; p = Product[1 + t^n/n, {n, 1, nn}]; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[p, {x, 0, nn}], x]

Formula

E.g.f.: A(T(x)) where A(x) is e.g.f. for A007838 and T(x) is e.g.f. for A000169.

Extensions

Terms a(8)-a(19) recomputed by Alois P. Heinz, Aug 10 2014

A305203 Expansion of e.g.f. Product_{k>=1} (1 + H(k)*x^k), where H(k) is the k-th harmonic number.

Original entry on oeis.org

1, 1, 3, 20, 94, 854, 7638, 77678, 823184, 11711952, 162710640, 2405290392, 40661618688, 701353671264, 13592382983424, 280431464804640, 5835146351362560, 130171240155651840, 3168997587241864704, 77082927941097660672, 2037627154674197591040, 56017463733173686947840
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 27 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + HarmonicNumber[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) HarmonicNumber[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d HarmonicNumber[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]

Formula

E.g.f.: Product_{k>=1} (1 + (A001008(k)/A002805(k))*x^k).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*H(j)^k*x^(j*k)/k).

A319113 Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k)/prime(k)).

Original entry on oeis.org

1, 0, 1, 2, 0, 44, 0, 1224, 2688, 25920, 293760, 3628800, 25090560, 762048000, 3887170560, 62749209600, 1233908121600, 22616539545600, 321930878976000, 10717413809356800, 108951843667968000, 1982497256570880000, 50138292140310528000, 1408088823809310720000, 25175914255793258496000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^ithprime(k)/ithprime(k)),k=1..100),x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Product[(1 + x^Prime[k]/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] (-d)^(1 - k/d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[Boole[PrimeQ[d]] (-d)^(1 - k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1+isprime(k)*x^k/k))) \\ Seiichi Manyama, Feb 27 2022

Formula

E.g.f.: exp(Sum_{k>=1} ( Sum_{p|k, p prime} (-p)^(1-k/p) ) * x^k/k).

A319177 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k/k)^n.

Original entry on oeis.org

1, 1, 4, 39, 500, 7990, 156684, 3640392, 97543088, 2960758800, 100428661440, 3764849536800, 154567280328768, 6897265807262064, 332386213584653760, 17204016957686536320, 951852354201532742400, 56059949872552858763520, 3501729575599545174352896, 231227806715994322631352960
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[(1 + x^k/k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 19}]
    Table[n! SeriesCoefficient[Exp[n Sum[Sum[(-1)^(k + 1) x^(j k)/(k j^k), {j, 1, n}], {k, 1, n}]], {x, 0, n}], {n, 0, 19}]

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*j^k)).

A351901 Number of permutations of [n] having at least one repeated cycle length.

Original entry on oeis.org

0, 0, 1, 1, 10, 46, 246, 1926, 16080, 143424, 1397520, 16163280, 190902240, 2534113440, 35501044320, 531674569440, 8558324490240, 147103748144640, 2631981703680000, 50393537347829760, 1011054905709004800, 21229069614652569600, 468171587690550374400
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2022

Keywords

Examples

			a(2) = 1: (1)(2).
a(3) = 1: (1)(2)(3).
a(4) = 10: (1)(2)(3)(4), (1)(2)(3,4), (1)(2,4)(3), (1)(2,3)(4), (1,4)(2)(3), (1,3)(2)(4), (1,2)(3)(4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> n!*(1-b(n$2)):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := n!*(1 - b[n, n]);
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

E.g.f.: 1/(1-x) - Product_{j>=1} (1 + x^j/j).
a(n) = A000142(n) - A007838(n).
Limit_{n-> infinity} a(n)/n! = 1 - exp(-gamma) = A227242 = 0.43854... .

A382780 Sum of the orders of all permutations of [n] with distinct cycle lengths.

Original entry on oeis.org

1, 1, 2, 12, 48, 360, 2520, 22680, 221760, 2298240, 28425600, 385862400, 5269017600, 80951270400, 1347631084800, 21565729785600, 413922526617600, 8409043612569600, 172028224598630400, 3765253760710041600, 84080417596471296000, 1935910813364656128000
Offset: 0

Views

Author

Alois P. Heinz, May 11 2025

Keywords

Examples

			a(3) = 12 = 2+2+2+3+3: (1)(23), (13)(2), (12)(3), (123), (132).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..22);

A131622 Number of cycles in all permutations of n elements with distinct cycle lengths.

Original entry on oeis.org

1, 1, 8, 22, 124, 948, 6138, 50832, 468144, 5165280, 54704880, 695854080, 9016051680, 130427750880, 1994479744320, 32575206343680, 555499414471680, 10284817657927680, 196642556903116800, 3994718386866278400, 84989047758544742400, 1895851170953432985600
Offset: 1

Views

Author

Vladeta Jovovic, Sep 02 2007

Keywords

Crossrefs

Programs

  • Maple
    A131622 := proc(n) local su,i ; su := add(x^i/(i+x^i),i=1..n+1) ; for i from 1 to n do su := taylor(su*(1+x^i/i),x=0,n+1) ; od: n!*coeftayl(su,x=0,n) ; end: seq(A131622(n),n=1..30) ; # R. J. Mathar, Oct 25 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, `if`(i>n, 0, (p->[0, p[1]]+p)(
           b(n-i, i-1)*binomial(n, i)*(i-1)!))+b(n, i-1)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, May 14 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, If[i > n, {0, 0}, Function[p, {0, p[[1]]} + p][b[n-i, i-1] Binomial[n, i] (i-1)!]] + b[n, i-1]]];
    a[n_] := b[n, n][[2]];
    Array[a, 30] (* Jean-François Alcover, May 22 2020, after Alois P. Heinz *)
    nmax = 30; Rest[CoefficientList[Series[Sum[x^k/(k + x^k), {k, 1, nmax}] * Product[1 + x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, May 22 2020 *)

Formula

E.g.f.: Sum(x^n/(n+x^n), n=1..inf) * Product(1+x^n/n, n=1..inf).

Extensions

More terms from R. J. Mathar, Oct 25 2007

A224211 Irregular triangular array read by rows. T(n,k) is the number of n-permutations with exactly k distinct cycle lengths; n>=1, 1<=k<=floor( (-1+(1+8n)^(1/2))/2 ).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 24, 50, 120, 234, 120, 720, 1764, 630, 5040, 11808, 7392, 40320, 109584, 69552, 362880, 954000, 763200, 151200, 3628800, 10628640, 8165520, 1330560, 39916800, 113891040, 109010880, 25280640, 479001600, 1486442880, 1345687200, 381775680, 6227020800, 18913184640, 19773804960, 6763236480, 87178291200, 283465647360, 291950568000, 102508005600, 10897286400
Offset: 1

Views

Author

Geoffrey Critzer, Apr 01 2013

Keywords

Comments

Row sums = A007838.

Examples

			:      1;
:      1;
:      2,      3;
:      6,      8;
:     24,     50;
:    120,    234,    120;
:    720,   1764,    630;
:   5040,  11808,   7392;
:  40320, 109584,  69552;
: 362880, 954000, 763200, 151200;
		

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+ (i-1)!*b(n-i, i-1)*
          `if`(i>n, 0, binomial(n, i)*x))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Oct 21 2015
  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[Product[(1+y x^i/i),{i,1,nn}],{x,0,nn}],{x,y}],1]]//Grid

Formula

E.g.f.: Product_{i>=1} (1 + y*x)^i/i.
Previous Showing 31-40 of 46 results. Next