A364283
Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length different from its own as an element.
Original entry on oeis.org
1, 0, 0, 1, 2, 12, 60, 408, 2640, 24480, 208080, 2262960, 23950080, 307359360, 3835641600, 57400358400, 825160089600, 13909727462400, 229664981145600, 4310966499840000, 79428141112320000, 1658163790483200000, 33795850208440320000, 770528520983789568000
Offset: 0
a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4),
(124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
-
f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:
a:= proc(m) option remember; local b; b:=
proc(n, i, p) option remember; `if`(i*(i+1)/2
A382781
Sum of GCD of cycle lengths over all permutations of [n] with distinct cycle lengths.
Original entry on oeis.org
0, 1, 2, 9, 32, 170, 1164, 7434, 62880, 582336, 5875200, 60041520, 841501440, 9440926560, 141618778560, 2222190784800, 34862691548160, 543348318159360, 11173101312844800, 186494289764106240, 4219768887634944000, 86094733814301542400, 1834643656963469721600
Offset: 0
a(3) = 9 = 3+3+1+1+1: (123), (132), (1)(23), (13)(2), (12)(3).
-
b:= proc(n, i, m) option remember; `if`(i*(i+1)/2 b(n$2, 0):
seq(a(n), n=0..22);
A212789
Number of endofunctions on [n] with distinct cycle lengths.
Original entry on oeis.org
1, 1, 3, 20, 186, 2229, 32790, 572018, 11541600, 264370473, 6776462320, 192163455384, 5972728750560, 201906797867085, 7375152706023648, 289473254317393110, 12149690892777901568, 543010240381452000273, 25746662043469525754880, 1290829803802550504743036
Offset: 0
a(3)=20 because there are 27 functions f:{1,2,3}->{1,2,3} but 7 of these have at least two cycles of equal length: (1,2,3);(1,2,1);(1,2,2);(1,1,3);(1,3,3);(2,2,3)(3,2,3) where the functions are represented by their values.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 10 2014
-
nn = 20; p = Product[1 + t^n/n, {n, 1, nn}]; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[p, {x, 0, nn}], x]
A305203
Expansion of e.g.f. Product_{k>=1} (1 + H(k)*x^k), where H(k) is the k-th harmonic number.
Original entry on oeis.org
1, 1, 3, 20, 94, 854, 7638, 77678, 823184, 11711952, 162710640, 2405290392, 40661618688, 701353671264, 13592382983424, 280431464804640, 5835146351362560, 130171240155651840, 3168997587241864704, 77082927941097660672, 2037627154674197591040, 56017463733173686947840
Offset: 0
-
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2)*n!:
seq(a(n), n=0..25); # Alois P. Heinz, May 27 2018
-
nmax = 21; CoefficientList[Series[Product[(1 + HarmonicNumber[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) HarmonicNumber[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d HarmonicNumber[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
A319113
Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k)/prime(k)).
Original entry on oeis.org
1, 0, 1, 2, 0, 44, 0, 1224, 2688, 25920, 293760, 3628800, 25090560, 762048000, 3887170560, 62749209600, 1233908121600, 22616539545600, 321930878976000, 10717413809356800, 108951843667968000, 1982497256570880000, 50138292140310528000, 1408088823809310720000, 25175914255793258496000
Offset: 0
-
seq(n!*coeff(series(mul((1+x^ithprime(k)/ithprime(k)),k=1..100),x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 09 2019
-
nmax = 24; CoefficientList[Series[Product[(1 + x^Prime[k]/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] (-d)^(1 - k/d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[Boole[PrimeQ[d]] (-d)^(1 - k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1+isprime(k)*x^k/k))) \\ Seiichi Manyama, Feb 27 2022
A319177
a(n) = n! * [x^n] Product_{k>=1} (1 + x^k/k)^n.
Original entry on oeis.org
1, 1, 4, 39, 500, 7990, 156684, 3640392, 97543088, 2960758800, 100428661440, 3764849536800, 154567280328768, 6897265807262064, 332386213584653760, 17204016957686536320, 951852354201532742400, 56059949872552858763520, 3501729575599545174352896, 231227806715994322631352960
Offset: 0
-
Table[n! SeriesCoefficient[Product[(1 + x^k/k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 19}]
Table[n! SeriesCoefficient[Exp[n Sum[Sum[(-1)^(k + 1) x^(j k)/(k j^k), {j, 1, n}], {k, 1, n}]], {x, 0, n}], {n, 0, 19}]
A351901
Number of permutations of [n] having at least one repeated cycle length.
Original entry on oeis.org
0, 0, 1, 1, 10, 46, 246, 1926, 16080, 143424, 1397520, 16163280, 190902240, 2534113440, 35501044320, 531674569440, 8558324490240, 147103748144640, 2631981703680000, 50393537347829760, 1011054905709004800, 21229069614652569600, 468171587690550374400
Offset: 0
a(2) = 1: (1)(2).
a(3) = 1: (1)(2)(3).
a(4) = 10: (1)(2)(3)(4), (1)(2)(3,4), (1)(2,4)(3), (1)(2,3)(4), (1,4)(2)(3), (1,3)(2)(4), (1,2)(3)(4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+b(n-i, min(i-1, n-i))/i))
end:
a:= n-> n!*(1-b(n$2)):
seq(a(n), n=0..23);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
a[n_] := n!*(1 - b[n, n]);
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A382780
Sum of the orders of all permutations of [n] with distinct cycle lengths.
Original entry on oeis.org
1, 1, 2, 12, 48, 360, 2520, 22680, 221760, 2298240, 28425600, 385862400, 5269017600, 80951270400, 1347631084800, 21565729785600, 413922526617600, 8409043612569600, 172028224598630400, 3765253760710041600, 84080417596471296000, 1935910813364656128000
Offset: 0
a(3) = 12 = 2+2+2+3+3: (1)(23), (13)(2), (12)(3), (123), (132).
-
b:= proc(n, i, m) option remember; `if`(i*(i+1)/2 b(n$2, 1):
seq(a(n), n=0..22);
A131622
Number of cycles in all permutations of n elements with distinct cycle lengths.
Original entry on oeis.org
1, 1, 8, 22, 124, 948, 6138, 50832, 468144, 5165280, 54704880, 695854080, 9016051680, 130427750880, 1994479744320, 32575206343680, 555499414471680, 10284817657927680, 196642556903116800, 3994718386866278400, 84989047758544742400, 1895851170953432985600
Offset: 1
-
A131622 := proc(n) local su,i ; su := add(x^i/(i+x^i),i=1..n+1) ; for i from 1 to n do su := taylor(su*(1+x^i/i),x=0,n+1) ; od: n!*coeftayl(su,x=0,n) ; end: seq(A131622(n),n=1..30) ; # R. J. Mathar, Oct 25 2007
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, `if`(i>n, 0, (p->[0, p[1]]+p)(
b(n-i, i-1)*binomial(n, i)*(i-1)!))+b(n, i-1)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..30); # Alois P. Heinz, May 14 2016
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, If[i > n, {0, 0}, Function[p, {0, p[[1]]} + p][b[n-i, i-1] Binomial[n, i] (i-1)!]] + b[n, i-1]]];
a[n_] := b[n, n][[2]];
Array[a, 30] (* Jean-François Alcover, May 22 2020, after Alois P. Heinz *)
nmax = 30; Rest[CoefficientList[Series[Sum[x^k/(k + x^k), {k, 1, nmax}] * Product[1 + x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, May 22 2020 *)
A224211
Irregular triangular array read by rows. T(n,k) is the number of n-permutations with exactly k distinct cycle lengths; n>=1, 1<=k<=floor( (-1+(1+8n)^(1/2))/2 ).
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 24, 50, 120, 234, 120, 720, 1764, 630, 5040, 11808, 7392, 40320, 109584, 69552, 362880, 954000, 763200, 151200, 3628800, 10628640, 8165520, 1330560, 39916800, 113891040, 109010880, 25280640, 479001600, 1486442880, 1345687200, 381775680, 6227020800, 18913184640, 19773804960, 6763236480, 87178291200, 283465647360, 291950568000, 102508005600, 10897286400
Offset: 1
: 1;
: 1;
: 2, 3;
: 6, 8;
: 24, 50;
: 120, 234, 120;
: 720, 1764, 630;
: 5040, 11808, 7392;
: 40320, 109584, 69552;
: 362880, 954000, 763200, 151200;
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+ (i-1)!*b(n-i, i-1)*
`if`(i>n, 0, binomial(n, i)*x))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..15); # Alois P. Heinz, Oct 21 2015
-
nn=15;f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[Product[(1+y x^i/i),{i,1,nn}],{x,0,nn}],{x,y}],1]]//Grid
Comments