cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 223 results. Next

A181373 Least m>0 such that prime(n) divides S(m)=A007908(m)=123...m and all numbers obtained by cyclic permutations of its digits; 0 if no such m exists.

Original entry on oeis.org

0, 2, 0, 100, 106, 120, 196, 102, 542, 400, 181, 21, 216, 372, 10446, 127, 10086, 616, 399, 1703, 196, 2009, 118, 12350, 516, 416, 13244, 884, 15462, 15146, 106, 1006942, 10762, 10814, 11634, 5808, 12408, 576, 30076, 4996, 25290, 1015092, 1108, 26874, 24036, 5994
Offset: 1

Views

Author

M. F. Hasler and Marco Ripà, Jan 27 2011

Keywords

Comments

The first three primes 2, 3 and 5 are particular cases, cf. examples. It happens that all other primes < 47 are in A180346 (and therefore have a(n) < 1000). P=37 is the only one among them with a(n) < 100 (but m=123 is another possibility for this prime).
Conjecture: a(n) > 0 for n <> 1 and n <> 3. - Chai Wah Wu, Oct 06 2023
Least m>0 such that prime(n) divides both A007908(m) and 10^A058183(m)-1; or 0 if no such m exists. - Chai Wah Wu, Oct 07 2023

Examples

			For prime(1)=2, no such m can exist (consider e.g. the initial 1 is permuted to the end), therefore a(1)=0.
For prime(2)=3, we have S(2)=12 and the permutation 21 both divisible by 3, thus a(2)=2. (There are many m for which the divisibility property is satisfied; it is equivalent to 1+...+m=0 (mod 3), or equivalently the sum of all these digits is divisible by 3. Therefore, the permutations do not need to be checked.)
For prime(3)=5, similar to prime(1)=2, no such m can exist.
For prime(4)=7, it turns out the m=100 is the least possibility, i.e., 123...99100 and the permutations 234...991001, 345...9910012, ... 100123...99, (00)123...991, (0)123...9910 are all divisible by 7.
		

Crossrefs

Cf. A000040, A007908, A058183, A180346 (see references there), A181373.

Programs

  • PARI
    A181373(p,LIM=999,MIN=1)={ p=prime(p); p!=2 & p!=5 & for(n=MIN,LIM, my(S=eval(concat(vector(n,i,Str(i)))),L=#Str(S)-1); S%p & next; for(k=1,L, (S=[1,10^L]*divrem(S,10)) % p & next(2)); return(n)) } /* highly unoptimized code, for illustration purpose */
    
  • Python
    from sympy import prime
    def A181373(n):
        s, p, l = '', prime(n), 0
        for m in range(1,10**6):
            u = str(m)
            s += u
            l += len(u)
            t = s
            if not int(t) % p:
                for i in range(l-1):
                    t = t[1:]+t[0]
                    if int(t) % p:
                        break
                else:
                    return m
        else:
            return 'search limit reached.' # Chai Wah Wu, Nov 12 2015
    
  • Python
    from itertools import count
    from sympy import prime
    def A181373(n):
        if n == 1 or n == 3: return 0
        p, c, q, a, b = prime(n), 0, 1, 10, 10
        for m in count(1):
            if m >= b:
                a = 10*a%p
                b *= 10
            c = (c*a + m) % p
            q = q*a % p
            if not (c or (q-1)%p):
                return m # Chai Wah Wu, Oct 07 2023

Formula

A007908( A181373(n) ) = 0 (mod A000040(n)).

Extensions

a(15)-a(31) from Chai Wah Wu, Nov 12 2015
a(32)-a(46) from Chai Wah Wu, Oct 06 2023

A078205 a(n) = A078204(n) / A007908(n).

Original entry on oeis.org

1, 18, 261, 3502, 44003, 530004, 6200005, 71000006, 800000008, 8900000074, 8999000074522, 98099900812365, 10628099988011209, 11446281093786559142, 122644629115519160114, 13082644736437172941406, 139008265613936288720365
Offset: 1

Views

Author

Amarnath Murthy, Nov 22 2002

Keywords

Examples

			a(3) = 261 = 32103/123.
		

Crossrefs

Extensions

More terms from Sascha Kurz, Jan 04 2003

A179069 Array read by antidiagonals: row b lists the base-b analog of the base-10 sequence 1, 12, 123, ..., 123456789, 12345678910, ... (A007908).

Original entry on oeis.org

1, 1, 3, 1, 6, 6, 1, 5, 27, 10, 1, 6, 48, 220, 15, 1, 7, 27, 436, 1765, 21, 1, 8, 38, 436, 3939, 14126, 28, 1, 9, 51, 194, 6981, 35367, 113015, 36, 1, 10, 66, 310, 4855, 111702, 318310, 1808248
Offset: 1

Views

Author

Jonathan Vos Post, Jun 27 2010

Keywords

Comments

The numbers in the row b of the array are constructed in base b, but are converted to base 10 for display here.
R. K. Guy writes [UPINT, A3, pp. 9-10]: Selfridge asked if the sequence (in decimal notation) 1, 12, 123, 1234, ... [A007908] ... contains infinitely many primes.... The question can be asked for other scales of notation. There are (trivially) an infinite number of primes in the n=2 column, as that converges to k+2. In the n=3 column, the first prime is A[3,8] = 83 (base 10) = 123 (base 8). In the n=7 column, the first prime is A[8,7] = 342391 (base 10) = 1234567 (base 8). This can be continued to bases higher than 10, where A, B, C, ... are conventionally used as numerals. For example, A[12,5] = 12345 (base 12) = 24677 (base 10) is prime, as is A[12,17] = 656998737209054448298001 (base 10). A[13,3] = 227 (base 10) = 123 (base 13) is prime. Similarly, to pick the 9th row but go further than the table shown here, A[9,14] = 1709671414851143033 (base 10) is prime. Existing OEIS sequences stop at A048447, the concatenation of first n numbers in base 16.

Examples

			The array begins:
====================================================================
....|n=1.|.n=2.|.n=3.|.n=4.|..n=5.|..n=6.|...n=7.|.....n=8.|.in OEIS
b=1.|.1..|...3.|...6.|..10.|...15.|...21.|....28.|......36.|.A000217
b=2.|.1..|...6.|..27.|.220.|.1765.|.14126|.113015|.1808248.|.A047778
b=3.|.1..|...5.|..48.|.436.|.3929.|.35367|.318310|.2864798.|.A048435
b=4.|.1..|...6.|..27.|.436.|.6981.|111702|1787239|28595832.|.A048436
b=5.|.1..|...7.|..38.|.194.|.4855.|121381|3034532|75863308.|.A048437
b=6.|.1..|...8.|..51.|.310.|.1865.|.67146|2417263|87021476.|.A048438
b=7.|.1..|...9.|..66.|.466.|.3267.|.22875|1120882|54923226.|.A048439
b=8.|.1..|..10.|..83.|.668.|.5349.|.42798|.342391|21913032.|.A048440
...
b=10|.1..|..12.|.123.|1234.|12345.|123456|1234567|12345678.|.A007908
=====================================================================
		

References

  • Richard K. Guy, Unsolved Problems In Number Theory, 2nd Edn., Springer Verlag, 1994.

Crossrefs

Formula

A[b,n] = n-th integer concatenated from consecutive integers in base b.

Extensions

Should be revised to start with base 2, rather than the ill-defined "base 1". - N. J. A. Sloane, Jul 05 2010

A180346 Primes that divide every circular permutation of the digits of at least one number of the form 123...(n-1)(n) (see A007908), where n is 3 digits long (that is, for some n in the range 99

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 61, 67, 73, 83, 97, 101, 107, 127, 163, 211, 271, 277, 1009, 18973
Offset: 1

Views

Author

Marco Ripà, Jan 22 2011

Keywords

Comments

Every a(i) divides at least 192 permutations of the digits of an element belonging to [A007908]. Skipping the trivial case a(1)=3, the most recurring elements are a(2)=7 and a(10)=37. The occurrences in our 1386450 terms set are the following [A181373]:
a(2) | 7 ⇒ n=100+14*v (v=0,1,2,...,64)
a(3) | 11 ⇒ n=106+22*v (v=0,1,2,...,40)
a(4) | 13 ⇒ n=120+26*v (v=0,1,2,...,33)
a(5) | 17 ⇒ n=196+272*v (v=0,1,2)
a(6) | 19 ⇒ n=102+114*v (v=0,1,2,3,4,5,6,7)
a(7) | 23 ⇒ n=542
a(8) | 29 ⇒ n=400
a(9) | 31 ⇒ n=181+155*v (v=0,1,2,3,4,5)
a(10)| 37 ⇒ n=123+d(v),
(where d(v)=0,12,25,12,25,12,25... for v=0,1,2,3,...,47)
a(11) | 41 ⇒ n=216+205*v (v=0,1,2,3)
a(12) | 43 ⇒ n=372+301*v (v=0,1,2)
a(13) | 53 ⇒ n=127+689*v (v=0,1)
a(14) | 61 ⇒ n=616
a(15) | 67 ⇒ n=399
a(16) | 73 ⇒ n=196+584*v (v=0,1)
a(17) | 83 ⇒ n=118
a(18) | 97 ⇒ n=516
a(19) | 101 ⇒ n=416+404*v (v=0,1)
a(20) | 107 ⇒ n=884
a(21) | 127 ⇒ n=106
a(22) | 163 ⇒ n=576
a(23) | 211 ⇒ n=306
a(24) | 271 ⇒ n=936
a(25) | 277 ⇒ n=174
a(26) | 1009 ⇒ n=960
a(27) | 18973 ⇒ n=903
N.B.
Every coefficient of "v" is a multiple of i. This is a general property of [A007908], valid for an arbitrary fixed digits interval of the parameter "n" (10^k-1
a(28) >= prime(10^6) if it exists. - Chai Wah Wu, Nov 12 2015
Primes p such that p divides both A007908(m) and 10^A058183(m)-1 for some 99Chai Wah Wu, Oct 07 2023
a(28) > prime(2.3316*10^9) if it exists. Conjecture: 18973 is the last term. - Chai Wah Wu, Oct 09 2023

References

  • Vassilev-Missana and K. Atanassov, “Some Smarandache problems”, Hexis, 2004.

Crossrefs

Programs

  • PARI
    isA180346(p)={ isprime(p) & p!=2 & p!=5 & for(n=100,999, my(S=eval(concat(vector(n,i,Str(i)))),L=#Str(S)-1); S%p & next; for(k=1,L, (S=[1,10^L]*divrem(S,10))%p & next(2));return(n)) }  /* returns the least corresponding n or 0 if not in this sequence */ \\ M. F. Hasler, Jan 23 2011
    
  • Python
    from itertools import islice
    from sympy import nextprime
    def A180346_gen(startvalue=1): # generator of terms >= startvalue
        p = max(startvalue-1,0)
        while (p:=nextprime(p)):
            c, q, a, b = 0, 1, 10, 10
            for m in range(1,1000):
                if m >= b:
                    a = 10*a%p
                    b *= 10
                c = (c*a + m) % p
                q = q*a % p
                if m>99 and not (c or (q-1)%p):
                    yield p
                    break
    A180346_list = list(islice(A180346_gen(),20)) # Chai Wah Wu, Oct 07 2023

Formula

For n<10 the only a(i) is 3. If 9

A276200 Largest prime < the concatenation of the numbers from 1 to n (A007908).

Original entry on oeis.org

11, 113, 1231, 12343, 123449, 1234547, 12345653, 123456761, 12345678899, 1234567891003, 123456789101099, 12345678910111207, 1234567891011121309, 123456789101112131383, 12345678910111213141337, 1234567891011121314151561, 123456789101112131415161717, 12345678910111213141516171723
Offset: 2

Author

Ilya Gutkovskiy, Aug 24 2016

Keywords

Examples

			a(5) = 12343, because this is the largest prime less than 12345.
		

Crossrefs

Programs

  • Maple
    tcat:= (a,b) -> a*10^(1+ilog10(b))+b:
    t:= 1: R:= NULL:
    for i from 2 to 20 do
      t:= tcat(t,i);
      R:= R,prevprime(t);
    od:
    R; # Robert Israel, Oct 29 2024
  • Mathematica
    Table[NextPrime[FromDigits[Flatten[IntegerDigits[Range[n]]]], -1], {n, 2, 19}]

Formula

a(n) = A151799(A007908(n)).
a(n) = A000040(A000720(A007908(n)-1)).

A293577 Decimal expansion of number with continued fraction expansion 0, 1, 12, 123, 1234, 12345, 123456, ... (A007908).

Original entry on oeis.org

9, 2, 3, 1, 2, 4, 9, 9, 9, 6, 8, 3, 4, 5, 0, 2, 4, 1, 1, 7, 4, 0, 1, 2, 3, 3, 0, 6, 0, 9, 8, 4, 2, 1, 9, 1, 6, 6, 3, 6, 7, 4, 8, 8, 6, 2, 9, 1, 6, 9, 0, 3, 9, 8, 9, 4, 1, 4, 7, 4, 4, 4, 1, 1, 1, 3, 5, 6, 7, 3, 9, 1, 1, 6, 5, 1, 4, 7, 4, 5, 2, 7, 3, 5, 4, 1, 2, 5, 4, 0, 4, 3, 2, 5, 1, 5, 0, 1, 9, 1
Offset: 0

Author

Ilya Gutkovskiy, Oct 12 2017

Keywords

Examples

			0.92312499968345024117401233060984219166367488... = 1/(1 + 1/(12 + 1/(123 + 1/(1234 + 1/(12345 + 1/(123456 + 1/...)))))).
		

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[FromContinuedFraction[Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 0, 20}]], 101]][[1]], 100]  (* modified by Ilya Gutkovskiy, Nov 08 2017 *)

Extensions

a(99) corrected by G. C. Greubel, Nov 07 2017

A362966 Numbers k such that A007908(k) == 1 (mod k).

Original entry on oeis.org

1, 121487, 293957, 13449179, 549999887
Offset: 1

Author

Max Alekseyev, Jun 06 2023

Keywords

Comments

a(6) > 10^11. - Jason Yuen, Oct 12 2024

Crossrefs

Programs

  • Python
    # See A029455 for concat_mod
    def isok(k): return concat_mod(10, k, k)==1%k # Jason Yuen, Oct 12 2024

A366393 a(n) is the largest number that can be obtained by deleting n digits from A007908(n).

Original entry on oeis.org

9, 91, 912, 9213, 92314, 931415, 9341516, 94151617, 945161718, 9516171819, 95617181920, 961718192021, 9671819202122, 97181920212223, 978192021222324, 9819202122232425, 98920212223242526, 992021222324252627, 9922122232425262728, 99222223242526272829, 992222324252627282930
Offset: 10

Author

Stefano Spezia, Oct 08 2023

Keywords

Comments

Inspired by the Example 1.1 at pp. 1-2 in Andreescu and Feng (see References).

References

  • Titu Andreescu and Zuming Feng, A Path to Combinatorics for Undergraduates: Counting Strategies, Birkhäuser, Boston, 2004.

Crossrefs

Cf. A007908, A011557, A055642, A366394 (smallest).

Formula

a(n) mod 10^A055642(n) = n, for n > 11.

A366394 a(n) is the smallest number that can be obtained by deleting n digits from A007908(n).

Original entry on oeis.org

0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111110, 11111111021, 111111102122, 1111110212223, 11111021222324, 111102122232425, 1110212223242526, 11021222324252627, 102122232425262728, 212223242526272829, 1222324252627282930, 12232425262728293031
Offset: 10

Author

Stefano Spezia, Oct 08 2023

Keywords

Comments

The leading zeros are omitted.

Crossrefs

Cf. A007908, A366393 (largest).

A019524 Duplicate terms of A007908.

Original entry on oeis.org

11, 1212, 123123, 12341234, 1234512345, 123456123456, 12345671234567, 1234567812345678, 123456789123456789, 1234567891012345678910, 12345678910111234567891011, 123456789101112123456789101112
Offset: 1

Author

R. Muller

Keywords

References

  • F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.

Formula

a(n) = A007908(n)*(1 + 10^A058183(n)) = (n + a(n - 1)*10^L(n)/(1 + 10^(n*L(n - 1) - (10^L(n - 1) - 1)/9)))*(1 + 10^((n + 1)*L(n) - (10^L(n) - 1)/9)) where L(n) = floor(log_10(10n)). - Henry Bottomley, Nov 17 2000 (may need to be adapted for change in offset)
Previous Showing 11-20 of 223 results. Next