cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 237 results. Next

A334731 a(n) = Product_{d|n} gcd(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 48, 1, 4, 3, 1, 1, 36, 1, 4, 1, 4, 1, 576, 1, 2, 1, 224, 1, 5184, 1, 1, 3, 2, 1, 144, 1, 4, 1, 40, 1, 2304, 1, 16, 9, 4, 1, 2304, 1, 2, 9, 4, 1, 864, 1, 1792, 1, 2, 1, 995328, 1, 4, 1, 1, 1, 20736, 1, 4, 3, 128, 1, 5184, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, May 09 2020

Keywords

Examples

			a(6) = gcd(sigma(1), pod(1)) * gcd(sigma(2), pod(2)) * gcd(sigma(3), pod(3)) * gcd(sigma(6), pod(6)) = gcd(1, 1) * gcd(3, 2) * gcd(4, 3) * gcd(12, 36) = 1 * 1 * 1 * 12 = 12.
		

Crossrefs

Cf. A334729 (Product_{d|n} gcd(tau(d), sigma(d))), A334663 (Sum_{d|n} gcd(sigma(d), pod(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A306682 (gcd(sigma(n), pod(n))).

Programs

  • Magma
    [&*[GCD(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[GCD[DivisorSigma[1, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
  • PARI
    pod(n) = vecprod(divisors(n));
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(sigma(d[k]), pod(d[k]))); \\ Michel Marcus, May 09-11 2020

Formula

a(p) = 1 for p = primes (A000040).

A334793 a(n) = Sum_{d|n} lcm(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 3, 7, 27, 11, 45, 15, 91, 34, 113, 23, 1797, 27, 213, 917, 5211, 35, 5904, 39, 24137, 1785, 509, 47, 333637, 386, 705, 2950, 66093, 59, 811055, 63, 103515, 4385, 1193, 4925, 10085352, 75, 1485, 6117, 2584201, 83, 3113715, 87, 256085, 183194, 2165, 95
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2020

Keywords

Examples

			a(6) = lcm(tau(1), pod(1)) + lcm(tau(2), pod(2)) + lcm(tau(3), pod(3)) + lcm(tau(6), pod(6)) = lcm(1, 1) + lcm(2, 2) + lcm(2, 3) + lcm(4, 36) = 1 + 2 + 6 + 36 = 45.
		

Crossrefs

Cf. A334662 (Sum_{d|n} gcd(tau(d), pod(d))), A334784 (Sum_{d|n} lcm(tau(d), sigma(d))).
Cf. A000005 (tau(n)), A007955 (pod(n)), A324528 (lcm(tau(n), pod(n))).

Programs

  • Magma
    [&+[LCM(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]];
    
  • Maple
    pod:= proc(n) option remember; convert(numtheory:-divisors(n),`*`) end proc:
    f:= proc(n) local d; add(ilcm(numtheory:-tau(d), pod(d)),d=numtheory:-divisors(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Jan 02 2025
  • Mathematica
    a[n_] := DivisorSum[n, LCM[(d = DivisorSigma[0, #]), #^(d/2)] &]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)
  • PARI
    a(n) = sumdiv(n, d, lcm(numdiv(d), vecprod(divisors(d)))); \\ Michel Marcus, May 12 2020

Formula

a(p) = 2p + 1 for p = odd primes (A065091).

A174896 a(n) = numbers k in increasing order such that A007955(m) = k has no solution for any m, where A007955(m) = product of divisors of m.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

Complement of A174895(n). A174897(a(n)) = 0, A174898(a(n)) = 1.

Extensions

More terms from Michel Marcus, Sep 18 2013

A174899 Record values of A007955(m), where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 2, 3, 8, 36, 64, 100, 1728, 5832, 8000, 331776, 810000, 10077696, 254803968, 46656000000, 139314069504, 351298031616, 531441000000, 782757789696, 1586874322944, 42998169600000000, 634562281237118976, 198359290368000000000, 634033809653760000000000
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

a(n) = A007955(A034287(n)).

Crossrefs

Cf. A007955 (product of divisors), A034287 (record indices).

Programs

  • PARI
    {my(m=0); for(n=i=1, 10^3, my(t=vecprod(divisors(n))); if(t>m, print1(t, ", "); m=t))} \\ Andrew Howroyd, Jan 05 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 05 2020

A174933 a(n) = Sum_{d|n} A007955(d) * A000027(d) = Sum_{d|n} A007955(d) * (d), where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 5, 10, 37, 26, 230, 50, 549, 253, 1030, 122, 20998, 170, 2798, 3410, 16933, 290, 105449, 362, 161062, 9320, 10774, 530, 7984134, 3151, 17750, 19936, 617486, 842, 24304630, 962, 1065509, 36068, 39598, 42950, 362923273, 1370, 55238, 59498, 102561574
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)*1 + b(2)*2 + b(4)*4 = 1*1 + 2*2 + 8*4 = 37.
		

Crossrefs

Cf. A007955.

Programs

  • Magma
    [&+[&*Divisors(d)*d:d in Divisors(n)]:n in [1..40]]; // Marius A. Burtea, Jan 05 2020
    
  • PARI
    a(n)={sumdiv(n, d, vecprod(divisors(d))*d)} \\ Andrew Howroyd, Jan 05 2020
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A174933(n): return sum(isqrt(d)**(c+2) if (c:=divisor_count(d)) & 1 else d**(c//2+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 25 2022

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 05 2020

A174939 a(n) = Sum_{k<=n} A007955(k) * A007955(k) = Sum_{k<=n} A007955(k)^2, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 5, 14, 78, 103, 1399, 1448, 5544, 6273, 16273, 16394, 3002378, 3002547, 3040963, 3091588, 4140164, 4140453, 38152677, 38153038, 102153038, 102347519, 102581775, 102582304, 110177896480, 110177912105, 110178369081, 110178900522, 110660790826, 110660791667
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(3)^2 + b(4)^2 = 1^2 + 2^2 + 3^2 + 8^2 = 78.
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[#^DivisorSigma[0, #] &, 29] (* Michael De Vlieger, May 03 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^numdiv(k)); \\ Michel Marcus, May 03 2022
    
  • Python
    from sympy import divisor_count
    from itertools import count, islice
    def agen():
        an = 1
        for k in count(2):
            yield an
            an += k**divisor_count(k)
    print(list(islice(agen(), 29))) # Michael S. Branicky, May 03 2022

Formula

a(n) = Sum_{k=1..n} A062758(k). - Michel Marcus, May 03 2022

Extensions

a(27) and beyond from Michael S. Branicky, May 03 2022

A324555 a(n) = the smallest number m such that gcd(tau(m), pod(m)) = n where tau(k) = the number of the divisors of k (A000005) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 9, 6, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 120, 18939904, 180, 94633984, 240, 35721, 11264, 2218786816, 360, 10000, 53248, 900, 1344, 225754218496, 720, 1031865892864, 840, 7144929, 1114112, 1960000, 1260, 94076963651584, 4980736
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

a(n) = the smallest number m such that A306671(m) = n.
If a(17) exists, it must be bigger than 10^7.

Examples

			For n=3; a(3) = 9 because gcd(tau(9), pod(9)) = gcd (3, 27) = 3 and 9 is the smallest.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10^6] | GCD(NumberOfDivisors(n), &*[d: d in Divisors(n)]) eq k]): k in [1..16]]
    
  • Mathematica
    Array[Block[{m = 1}, While[GCD[DivisorSigma[0, m], Times @@ Divisors@ m] != #, m++]; m] &, 16] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    a(n) = {my(k=1, vk = divisors(k)); while(gcd(#vk, vecprod(vk)) != n, k++; vk = divisors(k)); k;} \\ Michel Marcus, Mar 06 2019

Extensions

a(17)-a(38) from Jon E. Schoenfield, Mar 07 2019

A324982 a(n) = numerator of Sum_{d|n} (pod(d)/tau(d)) where pod(k) = the product of the divisors of k (A007955) and tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 2, 5, 14, 7, 25, 9, 62, 23, 59, 13, 1819, 15, 109, 245, 3382, 19, 1987, 21, 2731, 465, 257, 25, 250747, 271, 355, 775, 22295, 31, 405385, 33, 28434, 1121, 599, 1253, 6726169, 39, 745, 1557, 642763, 43, 1556549, 45, 28657, 61031, 1085, 49, 765671783, 713
Offset: 1

Views

Author

Jaroslav Krizek, Mar 22 2019

Keywords

Comments

Sum_{d|n} (pod(d)/tau(d)) > 1 for all n > 1.

Examples

			Sum_{d|n} (pod(d)/tau(d)) for n >= 1: 1, 2, 5/2, 14/3, 7/2, 25/2, 9/2, 62/3, 23/2, 59/2, ...
For n=4; Sum_{d|4} (pod(d)/tau(d)) = pod(1)/tau(1) + pod(2)/tau(2) + pod(4)/tau(4) = 1/1 + 2/2 + 8/3 = 14/3;  a(4) = 14.
		

Crossrefs

Cf. A000203, A007955, A324983 (denominators).

Programs

  • Magma
    [Numerator(&+[&*[c: c in Divisors(d)] / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]];
    
  • Mathematica
    Array[Numerator@ DivisorSum[#, Apply[Times, Divisors@ #]/DivisorSigma[0, #] &] &, 49] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, vecprod(divisors(d))/numdiv(d))); \\ Michel Marcus, Mar 23 2019

Formula

a(p) = p + 2 for p = odd primes.

A324983 a(n) = denominator of Sum_{d|n} (pod(d)/tau(d)) where pod(k) = the product of the divisors of k (A007955) and tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 6, 2, 2, 4, 15, 2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 4, 6, 2, 4, 2, 5, 4, 2, 4, 6, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 30, 6, 2, 4, 6, 2, 4, 4, 6, 4, 2, 2, 4, 2, 2, 4, 35, 4, 4, 2, 2, 4, 4, 2, 6, 2, 2, 12, 6, 4, 4, 2, 10, 20, 2, 2, 12, 4
Offset: 1

Views

Author

Jaroslav Krizek, Mar 22 2019

Keywords

Comments

Sum_{d|n} (pod(d)/tau(d)) > 1 for all n > 1.

Examples

			Sum_{d|n} (pod(d)/tau(d)) for n >= 1: 1, 2, 5/2, 14/3, 7/2, 25/2, 9/2, 62/3, 23/2, 59/2, ...
For n=4; Sum_{d|4} (pod(d)/tau(d)) = pod(1)/tau(1) + pod(2)/tau(2) + pod(4)/tau(4) = 1/1 + 2/2 + 8/3 = 14/3;  a(4) = 3.
		

Crossrefs

Cf. A000203, A007955, A324982 (numerators).

Programs

  • Magma
    [Denominator(&+[&*[c: c in Divisors(d)] / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Array[Denominator@ DivisorSum[#, Apply[Times, Divisors@ #]/DivisorSigma[0, #] &] &, 85] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, vecprod(divisors(d))/numdiv(d))); \\ Michel Marcus, Mar 23 2019

Formula

a(p) = 2 for p = odd primes.

A325030 a(n) = Product_{d|n} (sigma(d)*pod(d)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 336, 30, 31104, 56, 322560, 4212, 324000, 132, 84276412416, 182, 1580544, 1944000, 10239344640, 306, 2483164449792, 380, 6096384000000, 9483264, 13799808, 552, 1610547321930095001600, 116250, 31004064, 122821920, 108806975520768, 870
Offset: 1

Views

Author

Jaroslav Krizek, Apr 25 2019

Keywords

Comments

n divides a(n) for all n.

Examples

			a(6) = (sigma(1)*pod(1)) * (sigma(2)*pod(2)) * (sigma(3)*pod(3)) * (sigma(6)*pod(6)) = (1*1) * (3*2) * (4*3) * (12*36) = 31104.
		

Crossrefs

Programs

  • Magma
    [&*[&+ [c: c in Divisors(d)] * &*[c: c in Divisors(d)]: d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Times@@(DivisorSigma[1,#]Times@@Divisors[#]&/@Divisors[n]),{n,30}] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, my(dd=divisors(d[k])); vecsum(dd)*vecprod(dd)); \\ Michel Marcus, Apr 25 2019

Formula

a(n) = Product_{d|n} sigma(d) * Product_{d|n} pod(d) = A206032(n) * A266265(n).
a(p) = p*(p+1) for p = primes (A000040).
Previous Showing 21-30 of 237 results. Next