cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 117 results. Next

A090219 Signed triangle used to compute column sequences of array A078741 ((3,3)-Stirling2).

Original entry on oeis.org

1, -1, 4, 1, -8, 10, -1, 12, -30, 20, 1, -64, 600, -1600, 1225, -1, 80, -1000, 4000, -6125, 3136, 1, -96, 1500, -8000, 18375, -18816, 7056, -1, 448, -21000, 280000, -1500625, 3687936, -4148928, 1728000, 1, -512, 28000, -448000, 3001250, -9834496, 16595712, -13824000, 4492125, -1
Offset: 3

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The formula for the column no. k sequence of array A078741 is c(k;n) = b(k-2)*sum(a(k,m)*fallfac(m+2,3)^n,m=1..k-2),n>=0, k>=3 and fallfac(p,3) and b(n) are defined in the formula below.

Examples

			The third (k=5) column sequence of array A078741 is A078741(n+3,5)=c(5; n)= b(3)*(1*(3*2*1)^n -8*(4*3*2)^n +10*(5*4*3)^n), with b(3)= N(3)/A090220(3)=3/1=3, n>=0. This is 9*A089518.
The fifth (k=7) column sequence of array A078741 is A078741(n+3,7)=c(7; n)= b(5)*(1*(3*2*1)^n -64*(4*3*2)^n +600*(5*4*3)^n -1600*(6*5*4)^n +1225*(7*6*5)^n), with b(5)= N(5)/A090220(5)=3/2, n>=0. This is the sequence [243, 149580, 49658508, 13062960720,... ] which has a factor of 27.
Triangle begins:
  [1];
  [-1,4];
  [1,-8,10];
  [-1,12,-30,20];
  [1,-64,600,-1600,1225];
  ...
		

Crossrefs

Companion sequence A090220 for denominators D(m).

Formula

a(n, m) = A089505(n-2, m)*(sum(A089517(n, p)/fallfac(m+2, 3)^p, p=0..floor(2*(n-3)/3)))/b(n-2), n>=3, 1<= m<= n-2, else 0; with fallfac(q, 3)=A008279(q, 3)=q*(q-1)*(q-2) and b(n)=N(n)/D(n) where D(n) := A090220(n) and N(n) is given in A090220 for n=1..26.

A091747 Generalized Stirling2 array (7,2).

Original entry on oeis.org

1, 42, 14, 1, 5544, 3192, 588, 42, 1, 1507968, 1165248, 321552, 41496, 2688, 84, 1, 696681216, 655966080, 232606080, 41497344, 4143552, 240240, 7980, 140, 1, 489070213632, 533531142144, 226306918656, 50249808000, 6575950080
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2, A091746 (6, 2)-Stirling2.
Cf. A091545 (first column).
Cf. A091749 (row sums), A091751 (alternating row sums).

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+5*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=7, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(5*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=7, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A092077 Generalized Stirling2 array (8,2).

Original entry on oeis.org

1, 56, 16, 1, 10192, 4928, 776, 48, 1, 3872960, 2477440, 575680, 63360, 3536, 96, 1, 2517424000, 1940556800, 572868800, 86163840, 7326880, 364800, 10480, 160, 1, 2497284608000, 2210343116800, 773352966400, 143430604800, 15836206400, 1099612800, 49056960, 1398400, 24520, 240, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

The generalized (k, 2)-Stirling2 arrays are, for k=2, ..., 7: A078739, A078740, A090438, A091534, A091746 and A091747.
Cf. A091546, A091552 (first, resp. second column). A091757 (row sums). A091758 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := ((-1)^k/k!) Sum[(-1)^p Binomial[k, p] Product[FactorialPower[ p + 6(j-1), 2], {j, 1, n}], {p, 2, k}];
    Table[a[n, k], {n, 1, 6}, {k, 2, 2n}] // Flatten (* Jean-François Alcover, Feb 28 2020 *)

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+6*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=8, s=2.
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(6*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A144358 Partition number array, called M31(-2), related to A049404(n,m) = S1(-2;n,m) (generalized Stirling triangle).

Original entry on oeis.org

1, 2, 1, 2, 6, 1, 0, 8, 12, 12, 1, 0, 0, 40, 20, 60, 20, 1, 0, 0, 0, 40, 0, 240, 120, 40, 180, 30, 1, 0, 0, 0, 0, 0, 0, 280, 840, 0, 840, 840, 70, 420, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2240, 0, 0, 1120, 6720, 1680, 0, 2240, 3360, 112, 840, 56, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2240, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(-2;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
First member (K=2) in the family M31(-K) of partition number arrays.
If M31(-2;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle S1(-2) := A049404.

Examples

			[1]; [2,1]; [2,6,1]; [0,8,12,12,1]; [0,0,40,20,60,20,1]; ...
a(4,3) = 12 = 3*S1(-2;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A049425 (row sums).
Cf. A144357 (M31(-1) array), A144877 (M31(-3) array).

Formula

a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(S1(-2;j,1)^e(n,k,j),j=1..n) = M3(n,k)*product(S1(-2;j,1)^e(n,k,j),j=1..n) with S1(-2;n,1)|= A008279(2,n-1)= [1,2,2,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A144877 Partition number array, called M31(-3), related to A049410(n,m) = S1(-3;n,m) (generalized Stirling triangle).

Original entry on oeis.org

1, 3, 1, 6, 9, 1, 6, 24, 27, 18, 1, 0, 30, 180, 60, 135, 30, 1, 0, 0, 270, 360, 90, 1080, 405, 120, 405, 45, 1, 0, 0, 0, 1260, 0, 1890, 2520, 5670, 210, 3780, 2835, 210, 945, 63, 1, 0, 0, 0, 0, 1260, 0, 0, 10080, 11340, 30240, 0, 7560, 10080, 45360, 8505, 420, 10080, 11340
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(-3;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
First member (K=3) in the family M31(-K) of partition number arrays.
If M31(-3;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle S1(-3) := A049410.

Examples

			[1]; [3,1]; [6,9,1]; [6,24,27,18,1]; [0,30,180,60,135,30,1]; ...
a(4,3) = 27 = 3*S1(-3;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A049426 (row sums).
Cf. A144358 (M31(-2) array), A144878 (M31(-4) array).

Formula

a(n,k)= (n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(S1(-3;j,1)^e(n,k,j),j=1..n) = M3(n,k)*product(S1(-3;j,1)^e(n,k,j),j=1..n) with S1(-3;n,1)|= A008279(3,n-1)= [1,3,6,6,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A144878 Partition number array, called M31(-4), related to A049424(n,m) = S1(-4;n,m) (generalized Stirling triangle).

Original entry on oeis.org

1, 4, 1, 12, 12, 1, 24, 48, 48, 24, 1, 24, 120, 480, 120, 240, 40, 1, 0, 144, 1440, 1440, 360, 2880, 960, 240, 720, 60, 1, 0, 0, 2016, 10080, 504, 10080, 10080, 20160, 840, 10080, 6720, 420, 1680, 84, 1, 0, 0, 0, 16128, 20160, 0, 16128, 80640, 80640, 161280, 1344, 40320
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(-4;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
First member (K=4) in the family M31(-K) of partition number arrays.
If M31(-4;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle S1(-4) := A049424.

Examples

			[1]; [4,1]; [12,12,1]; [24,48,48,24,1]; [24,120,480,120,240,40,1]; ...
a(4,3) = 48 = 3*S1(-4;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A049427 (row sums).
Cf. A144877 (M31(-3) array), A144879 (M31(-5) array).

Formula

a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(S1(-4;j,1)^e(n,k,j),j=1..n) = M3(n,k)*product(S1(-4;j,1)^e(n,k,j),j=1..n) with S1(-4;n,1)= A008279(4,n-1)= [1,4,12,12,24,24,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A145362 Lower triangular array S1hat(-1) read by rows, related to partition number array A145361.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(-1):=A145361 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-1). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first column is [1,1,0,0,0,...]=A008279(1,n-1), n>=1.
T(n,m) gives the number of partitions of n with m parts, with each part not exceeding 2. - Wolfdieter Lang, Aug 03 2023

Examples

			Triangle begins:
  [1];
  [1,1];
  [0,1,1];
  [0,1,1,1];
  [0,0,1,1,1];
  [0,0,1,1,1,1];
  ...
		

Crossrefs

Cf. A004526(n+2), n>=1, (row sums).
Cf. A008275, A008279, A008284, A036039, A145361, A339884 (parts <=3), A232539 (parts <=4).

Programs

Formula

T(n,m) = Sum_{q=1..p(n,m)} Product_{j=1..n} S1(-1;j,1)^e(n,m,q,j) if n>=m>=1, else 0. Here p(n,m) = A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-1;n,1) = A008279(1,n-1) = [1,1,0,0,0,...], n>=1.
The triangle starts in row n with ceiling(n/2) - 1 zeros, and is 1 otherwise. - Wolfdieter Lang, Aug 03 2023
G.f.: 1/((1-u*t)*(1-u*t^2)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025

A145363 Partition number array, called M31hat(-2).

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 0, 2, 4, 2, 1, 0, 0, 4, 2, 4, 2, 1, 0, 0, 0, 4, 0, 4, 8, 2, 4, 2, 1, 0, 0, 0, 0, 0, 0, 4, 8, 0, 4, 8, 2, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 4, 8, 16, 0, 4, 8, 2, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 16, 0, 0, 4, 8, 16, 0, 4, 8, 2, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If all positive numbers are replaced by 1 this becomes the characteristic partition array for partitions with parts 1,2 or 3 only, provided the partitions of n are ordered like in Abramowitz-Stegun (A-St order; for the reference see A134278).
Second member (K=2) in the family M31hat(-K) of partition number arrays.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
This array is array A144358 divided entrywise by the array M_3=M3(1)=A036040. Formally 'A144358/A036040'. E.g. a(4,3)= 4 = 12/3 = A144358(4,3)/A036040(4,3).
If M31hat(-2;n,k) is summed over those k belonging to partitions with fixed number of parts m one obtains the unsigned triangle S1hat(-2):= A145364.

Examples

			Triangle begins
  [1];
  [2,1];
  [2,2,1];
  [0,2,4,2,1];
  [0,0,4,2,4,2,1];
  ...
a(4,3)= 4 = S1(-2;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A145361 (M31hat(-1)). A145366 (M31hat(-3)).

Formula

a(n,k) = product(S1(-2;j,1)^e(n,k,j),j=1..n) with S1(-2;n,1) = A008279(2,n-1) = [1,2,1,0,0,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.

A145366 Partition number array, called M31hat(-3).

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 6, 6, 9, 3, 1, 0, 6, 18, 6, 9, 3, 1, 0, 0, 18, 36, 6, 18, 27, 6, 9, 3, 1, 0, 0, 0, 36, 0, 18, 36, 54, 6, 18, 27, 6, 9, 3, 1, 0, 0, 0, 0, 36, 0, 0, 36, 54, 108, 0, 18, 36, 54, 81, 6, 18, 27, 6, 9, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 108, 216, 0, 0, 36, 54, 108, 162, 0, 18, 36, 54, 81
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If all positive numbers are replaced by 1 this becomes the characteristic partition array for partitions with parts 1,2,3 or 4 only, provided the partitions of n are ordered like in Abramowitz-Stegun (A-St order; for the reference see A134278).
Third member (K=3) in the family M31hat(-K) of partition number arrays.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
This array is array A144877 divided entrywise by the array M_3=M3(1)=A036040. Formally 'A144877/A036040'. E.g. a(4,3)= 9 = 27/3 = A144877(4,3)/A036040(4,3).
If M31hat(-3;n,k) is summed over those k numerating partitions with fixed number of parts m one obtains the unsigned triangle S1hat(-3):= A145367.

Examples

			Triangle begins:
  [1];
  [3,1];
  [6,3,1];
  [6,6,9,3,1];
  [0,6,18,6,9,3,1];
  ...
a(4,3)= 9 = S1(-3;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A145363 (M31hat(-2)). A145369 (M31hat(-4)).

Formula

a(n,k) = product(S1(-3;j,1)^e(n,k,j),j=1..n) with S1(-3;n,1) = A008279(3,n-1) = [1,3,6,6,0,0,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.

A159083 Products of 7 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 17297280, 32432400, 57657600, 98017920, 160392960, 253955520, 390700800, 586051200, 859541760, 1235591280, 1744364160, 2422728000, 3315312000, 4475671200, 5967561600, 7866331200
Offset: 0

Views

Author

Zerinvary Lajos, Apr 05 2009

Keywords

Crossrefs

Equals A008279(n,7) (for n>=7).

Programs

  • Magma
    I:=[0,0,0,0,0,0,0,5040]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2) +56*Self(n-3) -70*Self(n-4) +56*Self(n-5) -28*Self(n-6) +8*Self(n-7) -Self(n-8): n in [1..30]]; // G. C. Greubel, Jun 28 2018
  • Maple
    G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 36 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..33);
  • Mathematica
    Table[Times@@(n+Range[0,6]),{n,-6,25}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,0,0,0,0,0,5040},30] (* Harvey P. Dale, Apr 07 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0,0,0,0,0,0], Vec(5040*x^7/(1-x)^8)) \\ G. C. Greubel, Jun 28 2018
    

Formula

E.g.f.: x^7*exp(x).
For n>=8: a(n) = A173333(n,n-7). - Reinhard Zumkeller, Feb 19 2010
G.f.: 5040*x^7/(1-x)^8. - Colin Barker, Mar 27 2012
From Amiram Eldar, Mar 08 2022: (Start)
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6) = n!/(n-7)!.
Sum_{n>=7} 1/a(n) = 1/4320.
Sum_{n>=7} (-1)^(n+1)/a(n) = 4*log(2)/45 - 1327/21600. (End)
Previous Showing 51-60 of 117 results. Next