cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 117 results. Next

A181511 Triangle T(n,k) = n!/(n-k)! read by rows, 0 <= k < n.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 12, 24, 1, 5, 20, 60, 120, 1, 6, 30, 120, 360, 720, 1, 7, 42, 210, 840, 2520, 5040, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800
Offset: 1

Views

Author

Alford Arnold, Oct 26 2010

Keywords

Comments

Row n contains the same set of values as row A181512(n,.), which are related to labeled rooted trees (A000169) and Bell numbers (A000110) respectively.

Examples

			The triangle begins:
  1;
  1,  2;
  1,  3,  6;
  1,  4, 12, 24;
which is A181512 without duplicates.
		

Crossrefs

Cf. A002627 (row sums).

Programs

  • Haskell
    a181511 n k = a181511_tabl !! (n-1) !! k
    a181511_row n = a181511_tabl !! (n-1)
    a181511_tabl = tail $ map init a008279_tabl
    -- Reinhard Zumkeller, Nov 18 2012
  • Maple
    A181511 := proc(n,k) n!/(n-k)! ; end proc:
    seq(seq(A181511(n,k),k=0..n-1),n=1..16) ; # R. J. Mathar, Mar 03 2011

Formula

T(n,k) = A008279(n,k). - R. J. Mathar, Mar 03 2011

A295181 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x)^k.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 3, 4, 9, 0, 1, 0, 4, 6, 24, 44, 0, 1, 0, 5, 8, 45, 128, 265, 0, 1, 0, 6, 10, 72, 252, 880, 1854, 0, 1, 0, 7, 12, 105, 416, 1935, 6816, 14833, 0, 1, 0, 8, 14, 144, 620, 3520, 16146, 60032, 133496, 0, 1, 0, 9, 16, 189, 864, 5725, 31104, 153657, 589312, 1334961, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

A(n,k) is the k-fold exponential convolution of A000166 with themselves, evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x^2/2! + 2*k*x^3/3! + 3*k*(k + 2)*x^4/4! + 4*k*(5*k + 6)*x^5/5! + 5*k*(3*k^2 + 26*k + 24)*x^6/6! + ...
Square array begins:
  1,   1,    1,    1,    1,    1,  ...
  0,   0,    0,    0,    0,    0,  ...
  0,   1,    2,    3,    4,    5,  ...
  0,   2,    4,    6,    8,   10,  ...
  0,   9,   24,   45,   72,  105,  ...
  0,  44,  128,  252,  416,  620,  ...
		

Crossrefs

Columns k=0..5 give A000007, A000166, A087981, A137775, A383344, A383384.
Rows n=0..3 give A000012, A000004, A001477, A005843.
Main diagonal gives A295182.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    a(n, k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k-1, j)/(n-j)!); \\ Seiichi Manyama, Apr 25 2025

Formula

E.g.f. of column k: exp(-k*x)/(1 - x)^k.
From Seiichi Manyama, Apr 25 2025: (Start)
A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k-1,j)/(n-j)!.
A(0,k) = 1, A(1,k) = 0; A(n,k) = (n-1) * (A(n-1,k) + k*A(n-2,k)). (End)

A329943 Square array read by antidiagonals: T(n,k) is the number of right total relations between set A with n elements and set B with k elements.

Original entry on oeis.org

1, 3, 1, 7, 9, 1, 15, 49, 27, 1, 31, 225, 343, 81, 1, 63, 961, 3375, 2401, 243, 1, 127, 3969, 29791, 50625, 16807, 729, 1, 255, 16129, 250047, 923521, 759375, 117649, 2187, 1, 511, 65025, 2048383, 15752961, 28629151, 11390625, 823543, 6561, 1
Offset: 1

Views

Author

Roy S. Freedman, Nov 24 2019

Keywords

Comments

A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right total if for each b in B there exists an a in A such that (a,b) in R. T(n,k) is the number of right total relations and T(k,n) is the number of left total relations: relation R is left total if for each a in A there exists a b in B such that (a,b) in R.
From Manfred Boergens, Jun 23 2024: (Start)
T(n,k) is the number of k X n binary matrices with no 0 rows.
T(n,k) is the number of coverings of [k] by tuples (A_1,...,A_n) in P([k])^n, with P(.) denoting the power set.
Swapping n,k gives A092477 (with k<=n).
For nonempty A_j see A218695 (n,k swapped).
For disjoint A_j see A089072 (n,k swapped).
For nonempty and disjoint A_j see A019538 (n,k swapped). (End)

Examples

			T(n,k) begins, for 1 <= n,k <= 9:
    1,     1,       1,         1,           1,             1,               1
    3,     9,      27,        81,         243,           729,            2187
    7,    49,     343,      2401,       16807,        117649,          823543
   15,   225,    3375,     50625,      759375,      11390625,       170859375
   31,   961,   29791,    923521,    28629151,     887503681,     27512614111
   63,  3969,  250047,  15752961,   992436543,   62523502209,   3938980639167
  127, 16129, 2048383, 260144641, 33038369407, 4195872914689, 532875860165503
		

Crossrefs

Cf. A218695.
The diagonal T(n,n) is A055601.
A092477 = T(k,n) is the number of left total relations between A and B.
A053440 is the number of relations that are both right unique (see A329940) and right total.
A089072 is the number of functions from A to B: relations between A and B that are both right unique and left total.
A019538 is the number of surjections between A and B: relations that are right unique, right total, and left total.
A008279 is the number of injections: relations that are right unique, left total, and left unique.
A000142 is the number of bijections: relations that are right unique, left total, right total, and left unique.

Programs

  • Maple
    rt:=(n,k)->(2^n-1)^k:
  • Mathematica
    T[n_, k_] := (2^n - 1)^k; Table[T[n - k + 1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
  • MuPAD
    rt:=(n,k)->(2^n-1)^k:

Formula

T(n,k) = (2^n - 1)^k.

A049411 Triangle read by rows, the Bell transform of n!*binomial(5,n) (without column 0).

Original entry on oeis.org

1, 5, 1, 20, 15, 1, 60, 155, 30, 1, 120, 1300, 575, 50, 1, 120, 9220, 8775, 1525, 75, 1, 0, 55440, 114520, 36225, 3325, 105, 1, 0, 277200, 1315160, 730345, 112700, 6370, 140, 1, 0, 1108800, 13428800, 13000680, 3209745, 291060, 11130, 180, 1, 0, 3326400
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to triangle A049327.
a(n,1) = A008279(5,n-1). a(n,m) =: S1(-5; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A013988(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Row polynomial E(3,x) = 20*x + 15*x^2 + x^3.
Triangle starts:
{  1}
{  5,    1}
{ 20,   15,   1}
{ 60,  155,  30,  1}
{120, 1300, 575, 50, 1}
		

Crossrefs

Cf. A049327.
Row sums give A049428.

Programs

  • Mathematica
    rows = 10;
    a[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1,0,0,0,... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016

Formula

a(n, m) = n!*A049327(n, m)/(m!*6^(n-m));
a(n, m) = (6*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^6)/6)^m)/m!.

Extensions

New name from Peter Luschny, Jan 16 2016

A049424 Triangle read by rows, the Bell transform of n!*binomial(4,n) (without column 0).

Original entry on oeis.org

1, 4, 1, 12, 12, 1, 24, 96, 24, 1, 24, 600, 360, 40, 1, 0, 3024, 4200, 960, 60, 1, 0, 12096, 40824, 17640, 2100, 84, 1, 0, 36288, 338688, 270144, 55440, 4032, 112, 1, 0, 72576, 2407104, 3580416, 1212624, 144144, 7056, 144, 1, 0, 72576, 14515200, 41791680
Offset: 1

Keywords

Comments

Previous name was: A triangle of numbers related to triangle A049326.
a(n,1) = A008279(4,n-1). a(n,m) =: S1(-4; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A011801(n,m). The monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			E.g., row polynomial E(3,x) = 12*x + 12*x^2 + x^3.
Triangle starts:
   1;
   4,   1;
  12,  12,   1;
  24,  96,  24,   1;
  24, 600, 360,  40,   1;
		

Crossrefs

Cf. A049326.
Row sums give A049427.

Programs

  • Mathematica
    rows = 10;
    a[n_, m_] := BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016

Formula

a(n, m) = n!*A049326(n, m)/(m!*5^(n-m));
a(n, m) = (5*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^5)/5)^m)/m!.

Extensions

New name from Peter Luschny, Jan 16 2016

A070531 Generalized Bell numbers B_{4,3}.

Original entry on oeis.org

1, 73, 16333, 8030353, 7209986401, 10541813012041, 23227377813664333, 72925401604382826913, 312727862321385812968033, 1772004571987390827615327241, 12917715377912025572750844722221, 118521774439119390334062953438350513, 1343761301099219856651740487814621053313
Offset: 1

Author

Karol A. Penson, May 02 2002

Keywords

Crossrefs

Cf. A091028 (alternating row sums of A090440).

Programs

Formula

In Maple notation, a(n) = (1/12)*n!*(n+1)!*(n+2)!*hypergeom([n+1, n+2, n+3], [2, 3, 4], 1)/exp(1).
a(n) = Sum_{k=3..3*n} A090440(n, k) = (Sum_{k>=3} (1/k!)*Product_{j=1..n} fallfac(k+(j-1)*(4-3), 3))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

Extensions

Edited by Wolfdieter Lang, Dec 23 2003

A089515 Triangle of signed numbers used for the computation of the column sequences of triangle A090215.

Original entry on oeis.org

1, -1, 5, 1, -35, 90, -3, 595, -6885, 12005, 143, -150535, 6175845, -39484445, 52245760, -58201, 316465625, -42458934375, 772604284375, -3322503800000, 3547818864576, 216931, -6012846875, 2544269990625, -120371747505625, 1294115230100000, -4145626343257056, 3713894747640000
Offset: 1

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

A090215(n+m,m)= sum(a(m,p)*((p+3)*(p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A089516(m); m=1,2,..., n>=0.

Examples

			Triangle begins:
   1;
  -1,   5;
   1, -35,   90;
  -3, 595,-6885, 12005;
  ...
A090215(2+3,3) = 199296 = (1*(4*3*2*1)^2 - 35*(5*4*3*2)^2 + 90*(6*5*4*3)^2)/56.
a(3,2)= -35 = 56*(-1)*((5*4*3*2)^2)/((5*4*3*2-4*3*2*1)*(6*5*4*3-5*4*3*2)).
		

Formula

a(n, m)= D(n)*((-1)^(n-m))*(fallfac(m+3, 4)^(n-1))/(product(fallfac(m+3, 4)-fallfac(r+3, 4), r=1..m-1)*product(fallfac(r+3, 4)-fallfac(m+3, 4), r=m+1..n)), with D(n) := A089516(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)

A090211 Alternating row sums of array A078739 ((2,2)-Stirling2).

Original entry on oeis.org

1, -1, -1, 41, -375, -3001, 177063, -990543, -144800527, 3644593711, 214013895023, -12488200175463, -553322483517383, 61495192102867639, 2469939623420627543, -448608666325921194271, -19104207797417792353951, 4742067751530355028847327
Offset: 1

Author

Wolfdieter Lang, Dec 01 2003

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. -A000587(n) from Stirling2 case A008277 with a(0) := -1. A020556 (non-alternating sum, generalized Bell-numbers).

Programs

  • Mathematica
    a[n_] := Sum[(-1)^k FactorialPower[k, 2]^n/k!, {k, 2, Infinity}]*E; Array[a, 18] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) := sum( A078739(n, m)*(-1)^m, m=2..2*n), n>=1. a(0) := +1 may be added.
a(n) = sum(((-1)^k)*(fallfac(k, 2)^n)/k!, k=2..infinity)*exp(1), with fallfac(k, 2)=A008279(k, 2)=k*(k-1) and n>=1. This produces also a(0)=1.
E.g.f. if a(0)=1 is added: exp(1)*(sum(((-1)^k)*exp(k*(k-1)*x)/k!, k=2..infinity)). Similar to derivation on top p. 4656 of the Schork reference.

A090222 Array used for numerators of g.f.s for column sequences of array A090216 ((5,5)-Stirling2).

Original entry on oeis.org

1, 600, 600, 648000, 200, 2592000, 1270080000, 25, 2871000, 13592880000, 4267468800000, 1, 1294920, 36462182400, 100221504768000, 23228686172160000, 284800, 38559024000, 551224880640000, 1056582600192000000
Offset: 5

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is A090223(k-5)+1= floor(4*(k-5)/5)+1, k>=5: [1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, ...].
The g.f. G(k,x) for the k-th column (with leading zeros) of array A090216 is given there. The recurrence is G(k,x) = x*sum(binomial(k-r,5-r)*fallfac(5,5-r)*G(k-r,x),r=1..5))/(1-fallfac(k,5)*x), k>=5, with inputs G(k,x)=0 for k=1,2,3,4 and G(5,x)=x/(1-5!*x); where fallfac(n,m) := A008279(n,m) (falling factorials with fallfac(n,0) := 1). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=5: recurrence for S_{5,5}(n,k).

Examples

			[1]; [600]; [648000,200]; [2592000,1270080000,25]; ...
G(6,x)/x^2 = 600/((1-5!*x)*(1-6*5*4*3*2*x)). kmax(6)=0, hence P(6,x)=a(6,0)=600; x^2 from x^ceiling(6/5).
		

Formula

a(k, n) from: sum(a(k, n)*x^n, n=0..kmax(k)) = G(k, x)* product(1-fallfac(p, 5)*x, p=5..k)/x^ceiling(k/5), k>=5, with G(k, x) defined from the recurrence given above and kmax(k) := floor(4*(k-5)/5)= A090223(k-5).

A090435 Triangle of signed numbers used for the computation of the column sequences of triangle A090217.

Original entry on oeis.org

1, -1, 6, 1, -48, 147, -5, 1584, -24255, 50176, 1, -1980, 121275, -1003520, 1571724, -41, 496980, -113458275, 2950635520, -16174611684, 20412000000, 45182, -3322062810, 2744728561050, -206756932157440, 3081396966348393, -12443694076800000, 13160600037440625, -1294492177294
Offset: 1

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

A090217(n+m,m)= sum(a(m,p)*((p+4)*(p+3)*(p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A090436(m); m=1,2,..., n>=0.

Examples

			[1]; [ -1,6]; [1,-48,147]; [ -5,1584,-24255,50176]; ...
A090217(2+3,3) = 9086400 = (1*(5*4*3*2*1)^2 - 48*(6*5*4*3*2)^2 + 147*(7*6*5*4*3)^2)/100.
a(3,2)= -48 = 100*(-1)*((6*5*4*3*2)^2)/((6*5*4*3*2-5*4*3*2*1)*(7*6*5*4*3-6*5*4*3*2)).
		

Formula

a(n, m)= D(n)*((-1)^(n-m))*(fallfac(m+4, 5)^(n-1))/(product(fallfac(m+4, 5)-fallfac(r+4, 5), r=1..m-1)*product(fallfac(r+4, 5)-fallfac(m+4, 5), r=m+1..n)), with D(n) := A090436(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)
Previous Showing 71-80 of 117 results. Next