cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 117 results. Next

A076482 Triangle with T(n,k)=n!*(k-1)^k/k! where 1<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 3, 8, 0, 12, 32, 81, 0, 60, 160, 405, 1024, 0, 360, 960, 2430, 6144, 15625, 0, 2520, 6720, 17010, 43008, 109375, 279936, 0, 20160, 53760, 136080, 344064, 875000, 2239488, 5764801, 0, 181440, 483840, 1224720, 3096576, 7875000, 20155392, 51883209, 134217728
Offset: 1

Views

Author

Henry Bottomley, Oct 14 2002

Keywords

Examples

			Rows start
  0;
  0,   1;
  0,   3,   8;
  0,  12,  32,   81;
  0,  60, 160,  405, 1024;
  0, 360, 960, 2430, 6144, 15625;
  ...
		

Crossrefs

Row sums are A076483.

Programs

  • Mathematica
    Table[n! (k-1)^k/k!,{n,0,10},{k,n}]//Flatten (* Harvey P. Dale, Nov 28 2019 *)

Formula

T(n,k) = n*T(n, k-1) = A007778(k-1)*A008279(n,n-k) starting with T(n,n) = (n-1)^n = A007778(n-1).

A078738 Generalized Bell numbers B_{3,2}(n).

Original entry on oeis.org

1, 13, 355, 16333, 1121881, 106708921, 13354028563, 2118817455385, 414426460442833, 97746679844312581, 27311169061720393411, 8908525371578726747173, 3350963996380181114090665, 1438463413778071631322236593, 698374517715612292764726380851
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Crossrefs

B_{1, 1} = A000110, B_{2, 1} = A000262, B_{3, 1} = A020556 and B_{3, 3} = A069223. Row sums of A078740.
Alternating row sums A090437.

Programs

  • Mathematica
    a[n_] := (n+1)*n!^2*Sum[(-1)^k*HypergeometricPFQ[{2-k, n+1, n+2}, {2, 3}, 1]/(2*(k-2)!), {k, 2, 2n}]; Array[a, 13] (* Jean-François Alcover, Sep 01 2015 *)
    Table[Sum[(n + k)!*(n + k + 1)!/(k!*(k + 1)!*(k + 2)!), {k, 0, Infinity}]/E, {n, 1, 20}] (* Vaclav Kotesovec, Jul 27 2018 *)
  • PARI
    nmax = 20; p = floor(3*nmax*log(nmax)); default(realprecision, p);
    for(n=1, nmax, print1(round(exp(-1)*suminf(k=0, (n+k)!*(n+k+1)!/(k!*(k+1)!*(k+2)!))), ", ")) \\ G. C. Greubel and Vaclav Kotesovec, Jul 28 2018

Formula

a(n) = Sum_{k=2..2*n} A078740(n, k) = Sum_{k=1..infinity} (1/k!)*Product_{j=1..n}(fallfac(k+(j-1)*(3-2), 2))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=3, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
a(n) = Sum_{k>=0} ((n+k)!*(n+k+1)!/(k!*(k+1)!*(k+2)!))/exp(1), n>=1. From eq.(40) of the Blasiak et al. reference. [corrected by Vaclav Kotesovec, Jul 27 2018]
E.g.f. for a(n)/n! with a(0)=(exp(1)-1)/exp(1) added: Sum_{k>=0} (hypergeom([k+2, k+1], [1], z)/(k+2)!)/exp(1). From eq. (41) of the Blasiak et al. reference.

Extensions

Edited by Wolfdieter Lang, Dec 23 2003

A090221 Array used for numerators of g.f.s for column sequences of array A090214 ((4,4)-Stirling2).

Original entry on oeis.org

1, 96, 72, 14400, 16, 38400, 3456000, 1, 27000, 22104000, 1270080000, 7200, 34905600, 16111872000, 682795008000, 856, 21154176, 48248363520, 15279164006400, 516193026048000, 48, 6064128, 54644474880, 78083415244800
Offset: 4

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is A037915(k-4)= floor(3*(k-4)/4)+1, k>=4: [1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, ...].
The g.f. G(k,x) for the k-th column (with leading zeros) of array A090214 is given there. The recurrence is G(k,x) = x*sum(binomial(k-r,4-r)*fallfac(4,4-r)*G(k-r,x),r=1..4))/(1-fallfac(k,4)*x), k>=4, with inputs G(k,x)=0 for k=1,2,3 and G(4,x)=x/(1-4!*x); where fallfac(n,m) := A008279(n,m) (falling factorials with fallfac(n,0) := 1). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=4: recurrence for S_{4,4}(n,k).

Examples

			[1]; [96]; [72,14400]; [16,38400,3456000]; [1,27000,22104000,1270080000]; ...
G(5,x)/x^2 = 96/((1-4!*x)*(1-5*4*3*2*x)). kmax(5)=0, hence P(5,x)=a(5,0)=96; x^2 from x^ceiling(5/4).
		

Formula

a(k, n) from: sum(a(k, n)*x^n, n=0..kmax(k)) = G(k, x)* product(1-fallfac(p, 4)*x, p=4..k)/x^ceiling(k/4), k>=4, with G(k, x) defined from the recurrence given above and kmax(k) := A057353(k-4)= floor(3*(k-4)/4)= A037915(k-4)-1.

A091757 Generalized Bell numbers B_{8,2}.

Original entry on oeis.org

1, 73, 15945, 6993073, 5124715761, 5641397595321, 8700819552421753, 17898786381229403105, 47345052327747786859873, 156535091017683923932912041, 632460052562874236182866885161
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A091749 (B_{7, 2}).

Programs

  • Mathematica
    a[n_] := Sum[Product[FactorialPower[k+6*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Array[a, 11] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n)=sum(A092077(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+6*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

A248716 Numerator of (1/e)*Sum_{k>=0} (1/k!)*(Sum_{j=0..k} j^n).

Original entry on oeis.org

2, 3, 17, 27, 293, 791, 10583, 25685, 448303, 251411, 4503535, 6331107, 4436875097, 3335427631, 19619696071, 75379875277, 3019260651391, 16773385986619, 3047463007411973, 2732480436961811, 398377271835431771, 173581842021095897, 1716900426430701553, 35001773773285490879, 6684326532123939298051
Offset: 0

Views

Author

Richard R. Forberg, Dec 28 2014

Keywords

Comments

Denominators are given by A130190, which in that entry are associated with the denominators of the z-sequence for a certain Sheffer matrix (triangle), but also apply here. See also the formula given there for the denominator of a certain sum involving the Stirling2 numbers.
Note that a(0) = 2 uses 0^0 := 1. For n >= 1 use triangle A079618 and the formula (1/e)*Sum_{k>=0} ((k+1)^n)/k! = Bell(n+1) = A000110(n+1). - Wolfdieter Lang, Feb 03 2015
If instead of Sum_{j=0..k} j^n one uses the sum with falling factorials, namely F(k, n) := Sum_{j=0..k} A008279(j, n) = A008279(k+1, n+1)/(n+1) the result for the rationals R(n) = (1/e)*Sum_{k>=0} (1/k!)*F(k, n) becomes very simple, namely R(n) = (n+2)/(n+1), n >= 0. - Wolfdieter Lang, Feb 03 2015

Examples

			Terms up to n = 10, with denominators, are 2/1, 3/2, 17/6, 27/4, 293/15, 791/12, 10583/42, 25685/24, 448303/90, 251411/10, 4503535/33, ... .
From _Wolfdieter Lang_, Feb 03 2015: (Start)
With triangle A079618, A064538 and the Bell numbers A000110 the rationals r(n) are:
n=4: (1/30)*(-1*1 + 0*2 + 10*5 + 15*15 + 6*52) = 293/15.
n=9: (1/20)*(0*1 + (-3)*2 +  0*5 + 10*15 + 0*52 + (-14)*203 + 0*877 + 15*4140 + 10*21147 + 2*115975) = 251411/10.
(End)
		

Crossrefs

Programs

  • Mathematica
    Numerator[Table[(1/Exp[1])*Sum[Sum[j^n/k!, {j, 0, k}], {k, 0, Infinity}],
    {n, 0, 100}]]

Formula

a(n) = numerator(r(n)) with the rationals r(n) = (1/e)*Sum_{k>=0} (1/k!)*(Sum_{j=0..k} j^n), n >= 0, where 0^0 := 1.
a(n) = numerator(r(n)), with r(n) = (1/A064538(n))*Sum_{k=0..n} T(n+1,k+1)*Bell(k+1), with T(n,k) = A079618(n,k) and Bell(n) = A000110(n), for n >= 1. a(0) = 2 using 0^0 := 1. See comments above. - Wolfdieter Lang, Feb 03 2015

Extensions

Edited. Comment and formula rewritten. Cross references added. - Wolfdieter Lang, Feb 03 2015

A288853 Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 1, 7, 42, 168, 1, 15, 210, 2520, 20160, 1, 31, 930, 26040, 624960, 9999360, 1, 63, 3906, 234360, 13124160, 629959680, 20158709760, 1, 127, 16002, 1984248, 238109760, 26668293120, 2560156139520, 163849992929280, 1, 255, 64770, 16322040, 4047865920, 971487820800, 217613271859200, 41781748196966400, 5348063769211699200
Offset: 0

Views

Author

Geoffrey Critzer, Jun 18 2017

Keywords

Comments

The (q = 2) analog of A008279.
A022166(m,k)*T(n,k) is the number of m X n matrices over F_2 that have rank k.
a(n) is the number of n X n matrices over F_2 in Green's R class containing A where rank(A) = k. - Geoffrey Critzer, Oct 05 2022

Examples

			  1;
  1,  1;
  1,  3,   6;
  1,  7,  42,   168;
  1, 15, 210,  2520,  20160;
  1, 31, 930, 26040, 624960, 9999360;
  ...
		

Crossrefs

Columns k=0-10 give: A000012, A000225, 6*A006095, 168*A006096, 20160*A006097, 9999360*A006110, 20158709760*A022189, 163849992929280*A022190, 5348063769211699200*A022191, 699612310033197642547200*A022192, 366440137299948128422802227200*A022193.
Main diagonal gives A002884.
Cf. A022166.

Programs

  • Mathematica
    Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0,8}] // Grid

Formula

T(n,k) = Product_{j=0..k-1} (2^n - 2^j).
T(n,k) = A002884(k)*A022166(n,k).
Let g_m(x) = Sum_{n>=0} (2^m*x)^n/A005329(n) and e(x) = Sum_{n>=0} x^n/A005329(n). Then Sum_{k>=0} T(n,k)*x^k/A005329(k) = g_n(x)/e(x). - Geoffrey Critzer, Jun 01 2024

A338993 Triangle read by rows: T(n,k) is the number of k-permutations of {1,...,n} that form a nontrivial arithmetic progression, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 6, 2, 4, 12, 4, 2, 5, 20, 8, 4, 2, 6, 30, 12, 6, 4, 2, 7, 42, 18, 10, 6, 4, 2, 8, 56, 24, 14, 8, 6, 4, 2, 9, 72, 32, 18, 12, 8, 6, 4, 2, 10, 90, 40, 24, 16, 10, 8, 6, 4, 2, 11, 110, 50, 30, 20, 14, 10, 8, 6, 4, 2, 12, 132, 60, 36, 24, 18, 12, 10, 8, 6, 4, 2
Offset: 1

Views

Author

Marcel K. Goh, Nov 17 2020

Keywords

Comments

The step size ranges from 1 to floor((n-1)/(k-1)) and for each r, there are 2*(n-(k-1)*r) possible ways to form a progression.
Proof can be found in Lemma 1 of Goh and Zhao (2020).

Examples

			Triangle T(n,k) begins:
  n/k  1   2   3   4   5   6   7   8   9  10  11  12 ...
   1   1
   2   2   2
   3   3   6   2
   4   4  12   4   2
   5   5  20   8   4   2
   6   6  30  12   6   4   2
   7   7  42  18  10   6   4   2
   8   8  56  24  14   8   6   4   2
   9   9  72  32  18  12   8   6   4   2
  10  10  90  40  24  16  10   8   6   4   2
  11  11 111  50  30  20  14  10   8   6   4   2
  12  12 132  60  36  24  18  12  10   8   6   4   2
  ...
For n=4 and k=3 the T(4,3)=4 permutations are 123, 234, 321, and 432.
		

Crossrefs

Cf. A008279.

Programs

  • Mathematica
    T[n_,k_]:=If[k==1, n,Sum[2(n-(k-1)r),{r,Floor[(n-1)/(k-1)]}]]; Flatten[Table[T[n,k],{n,12},{k,n}]] (* Stefano Spezia, Nov 17 2020 *)
  • PARI
    T(n,k) = if (k==1, n, sum(r=1, (n-1)\(k-1), 2*(n-(k-1)*r))); \\ Michel Marcus, Sep 08 2021

Formula

T(n,k) = n, if k=1; Sum_{r=1..floor((n-1)/(k-1))} 2*(n-(k-1)*r), if 2 <= k <= n.
T(n,k) = 2*n*f - (k-1)*(f^2 + f), where f = floor((n-1)/(k-1)), for 2 <= k <= n.

A349280 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k rounds; n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

2, 3, 8, 12, 30, 60, 144, 330, 120, 840, 2100, 1260, 5760, 15344, 11760, 1680, 45360, 127008, 113400, 30240, 403200, 1176120, 1169280, 428400, 30240, 3991680, 12054240, 13000680, 5821200, 831600, 43545600, 135508032, 155923680, 80415720, 16632000, 665280
Offset: 2

Views

Author

Steven Finch, Nov 13 2021

Keywords

Comments

A round means the same as a directed ring or circle.

Examples

			Triangle starts:
[2]     2;
[3]     3;
[4]     8,     12;
[5]    30,     60;
[6]   144,    330,    120;
[7]   840,   2100,   1260;
[8]  5760,  15344,  11760,  1680;
[9] 45360, 127008, 113400, 30240;
...
For n = 4, there are 8 ways to make one round and 12 ways to make two rounds.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)

Crossrefs

Row sums give A066166 (Stanley's children's game).
Column 1 gives A001048.
Right border element of row n is A001813(n/2) = |A067994(n)| for even n.

Programs

  • Maple
    ser := series((1 - x)^(-x*t), x, 20): xcoeff := n -> coeff(ser, x, n):
    T := (n, k) -> n!*coeff(xcoeff(n), t, k):
    seq(seq(T(n, k), k = 1..iquo(n,2)), n = 2..12); # Peter Luschny, Nov 13 2021
    # second Maple program:
    A349280 := (n,k) -> binomial(n,k)*k!*abs(Stirling1(n-k,k)):
    seq(print(seq(A349280(n,k), k=1..iquo(n,2))), n=2..12); # Mélika Tebni, May 03 2023
  • Mathematica
    f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t), {x, 0, n}, {t, 0, k}]
    Table[f[k, n], {n, 2, 12}, {k, 1, Floor[n/2]}]

Formula

G.f.: (1 - x)^(-x*t).
T(n, k) = binomial(n, k)*k!*|Stirling1(n-k, k)|. - Mélika Tebni, May 03 2023
The above formula can also be written as T(n, k) = A008279(n, k)*A331327(n, k) or as T(n, k) = A265609(n + 1, k)*A331327(n, k). - Peter Luschny, May 03 2023

A387126 Triangle read by rows: T(n, k) = (n! / (n - k)!) * Product_{k=1..n} radical(k), where radical(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

1, 1, 1, 2, 4, 4, 6, 18, 36, 36, 12, 48, 144, 288, 288, 60, 300, 1200, 3600, 7200, 7200, 360, 2160, 10800, 43200, 129600, 259200, 259200, 2520, 17640, 105840, 529200, 2116800, 6350400, 12700800, 12700800, 5040, 40320, 282240, 1693440, 8467200, 33868800, 101606400, 203212800, 203212800
Offset: 0

Views

Author

Peter Luschny, Aug 18 2025

Keywords

Examples

			Triangle begins:
  [0]    1;
  [1]    1,     1;
  [2]    2,     4,      4;
  [3]    6,    18,     36,     36;
  [4]   12,    48,    144,    288,     288;
  [5]   60,   300,   1200,   3600,    7200,    7200;
  [6]  360,  2160,  10800,  43200,  129600,  259200,   259200;
  [7] 2520, 17640, 105840, 529200, 2116800, 6350400, 12700800, 12700800;
		

Crossrefs

Cf. A007947 (radical), A008279, A048803 (column 0), A277174 (main diagonal).

Programs

  • Maple
    A387126 := (n, k) -> mul(NumberTheory:-Radical(j), j = 1..n) * n! / (n - k)!:
  • Mathematica
    A387126[n_, k_] := Pochhammer[n-k+1, k] Times @@ ResourceFunction["IntegerRadical"][Range[1, n]];
    Table[A387126[n, k], {n, 0, 8}, {k, 0, n}]  // Flatten

Formula

T(n, k) = A048803(n) * A008279(n, k).

A071417 Triangle of expected coupon collection numbers rounded up; i.e., if aiming to collect part of a set of n coupons, the expected number of random coupons required to receive first the set with exactly k missing.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 6, 3, 1, 0, 9, 5, 3, 1, 0, 12, 7, 4, 3, 1, 0, 15, 9, 6, 4, 3, 1, 0, 19, 12, 8, 6, 4, 3, 1, 0, 22, 14, 10, 8, 6, 4, 3, 1, 0, 26, 17, 12, 9, 7, 5, 4, 3, 1, 0, 30, 20, 15, 11, 9, 7, 5, 4, 3, 1, 0, 34, 23, 17, 14, 11, 9, 7, 5, 4, 3, 1, 0, 38, 26, 20, 16, 13, 10, 8, 7, 5, 4, 3, 1, 0, 42
Offset: 0

Views

Author

Henry Bottomley, May 29 2002

Keywords

Examples

			Rows start
0;
1,0;
3,1,0;
6,3,1,0;
9,5,3,1,0;
etc.
		

Crossrefs

Cf. A060293 (left hand column), A067176.

Programs

  • Mathematica
    Table[Ceiling[n Sum[1/j, {j, k + 1, n}]], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 30 2017 *)

Formula

a(n, k) = ceiling(n*Sum_{j=k+1..n} 1/j) = ceiling(A067176(n, k)*k!/(n-1)!) = ceiling(A008279(n, n-k)*Sum_{j>=n-k} j*A008277(j-1, n-k-1)/n^j).
Previous Showing 91-100 of 117 results. Next