A176488
Triangle T(n,k) = A008292(n+1,k+1) + A176487(n,k) - 1, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 23, 23, 1, 1, 54, 136, 54, 1, 1, 117, 612, 612, 117, 1, 1, 244, 2395, 4850, 2395, 244, 1, 1, 499, 8605, 31271, 31271, 8605, 499, 1, 1, 1010, 29242, 176522, 312448, 176522, 29242, 1010, 1, 1, 2033, 95714, 910466, 2620832, 2620832, 910466
Offset: 0
1;
1, 1;
1, 8, 1;
1, 23, 23, 1;
1, 54, 136, 54, 1;
1, 117, 612, 612, 117, 1;
1, 244, 2395, 4850, 2395, 244, 1;
1, 499, 8605, 31271, 31271, 8605, 499, 1;
1, 1010, 29242, 176522, 312448, 176522, 29242, 1010, 1;
1, 2033, 95714, 910466, 2620832, 2620832, 910466, 95714, 2033, 1;
1, 4080, 305317, 4407094, 19476436, 31448746, 19476436, 4407094, 305317, 4080, 1;
-
A176488 := proc(n,k)
A008292(n+1,k+1)+A176487(n,k)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 1] + t[n, m, q - 2] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A014449
Numbers in the triangle of Eulerian numbers (A008292) that are not 1.
Original entry on oeis.org
4, 11, 11, 26, 66, 26, 57, 302, 302, 57, 120, 1191, 2416, 1191, 120, 247, 4293, 15619, 15619, 4293, 247, 502, 14608, 88234, 156190, 88234, 14608, 502, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 2036, 152637, 2203488, 9738114
Offset: 1
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.
A038675
Triangle read by rows: T(n,k)=A(n,k)*binomial(n+k-1,n), where A(n,k) are the Eulerian numbers (A008292).
Original entry on oeis.org
1, 1, 3, 1, 16, 10, 1, 55, 165, 35, 1, 156, 1386, 1456, 126, 1, 399, 8456, 25368, 11970, 462, 1, 960, 42876, 289920, 393030, 95040, 1716, 1, 2223, 193185, 2577135, 7731405, 5525091, 741741, 6435, 1, 5020, 803440, 19411480, 111675850, 176644468
Offset: 1
1;
1,3;
1,16,10;
1,55,165,35;
1,156,1386,1456,126;
...
If a = 3,1,1,2,4,3 the corresponding 6-permutation is 2,3,4,1,6,5 because the first 1 is in the 2nd position, the second 1 is in the 3rd position,the 2 is in the 4th position, the first 3 is in the first position, the next 3 is in the 6th position and the 4 is in the 5th position of the sequence a. [From _Geoffrey Critzer_, May 19 2010]
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition, Addison-Wesley, Reading, Mass., 1994, p. 269 (Worpitzky's identity).
- Miklos Bona, Combinatorics of Permutations,Chapman and Hall,2004,page 6. [From Geoffrey Critzer, May 19 2010]
Row sums yield
A000312 (Worpitzky's identity).
-
A:=(n,k)->sum((-1)^j*(k-j)^n*binomial(n+1,j),j=0..k): T:=(n,k)->A(n,k)*binomial(n+k-1,n): seq(seq(T(n,k),k=1..n),n=1..10);
-
Table[Table[Eulerian[n, k] Binomial[n + k, n], {k, 0, n - 1}], {n, 1,10}] (* Geoffrey Critzer, Jun 13 2013 *)
A085503
Sub-triangle of A008292: take every second term of every second row.
Original entry on oeis.org
1, 1, 1, 1, 66, 1, 1, 1191, 1191, 1, 1, 14608, 156190, 14608, 1, 1, 152637, 9738114, 9738114, 152637, 1, 1, 1479726, 423281535, 2275172004, 423281535, 1479726, 1, 1, 13824739, 15041229521, 311387598411
Offset: 0
{1},
{1, 1},
{1, 66, 1},
{1, 1191, 1191, 1},
{1, 14608, 156190, 14608, 1},
{1, 152637, 9738114, 9738114, 152637, 1},
-
<< DiscreteMath`Combinatorica`
a = Table[Table[Eulerian[n + 1, 2*m], {m, 0, Floor[n/2]}], {n, 0, 20, 2}];
Flatten[%]
A141689
Average of Eulerian numbers (A008292) and Pascal's triangle (A007318): t(n,m) = (A008292(n,m) + A007318(n,m))/2.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 36, 15, 1, 1, 31, 156, 156, 31, 1, 1, 63, 603, 1218, 603, 63, 1, 1, 127, 2157, 7827, 7827, 2157, 127, 1, 1, 255, 7318, 44145, 78130, 44145, 7318, 255, 1, 1, 511, 23938, 227638, 655240, 655240, 227638, 23938, 511, 1
Offset: 1
{1},
{1, 1},
{1, 3, 1},
{1, 7, 7, 1},
{1, 15, 36, 15, 1},
{1, 31, 156, 156, 31, 1},
{1, 63, 603, 1218, 603, 63, 1},
{1, 127, 2157, 7827, 7827, 2157, 127, 1},
{1, 255, 7318, 44145, 78130, 44145, 7318, 255, 1},
{1, 511, 23938, 227638, 655240, 655240, 227638, 23938, 511, 1}
-
Table[Table[(Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] + Binomial[n - 1, k])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
A141690
Triangle t(n,m) = 2*A008292(n+1,m+1) - A007318(n,m), a linear combination of Eulerian numbers and Pascal's triangle, 0 <= m <= n.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 126, 48, 1, 1, 109, 594, 594, 109, 1, 1, 234, 2367, 4812, 2367, 234, 1, 1, 487, 8565, 31203, 31203, 8565, 487, 1, 1, 996, 29188, 176412, 312310, 176412, 29188, 996, 1, 1, 2017, 95644, 910300, 2620582, 2620582, 910300
Offset: 0
Triangle begins
1;
1, 1;
1, 6, 1;
1, 19, 19, 1;
1, 48, 126, 48, 1;
1, 109, 594, 594, 109, 1;
1, 234, 2367, 4812, 2367, 234, 1;
1, 487, 8565, 31203, 31203, 8565, 487, 1;
1, 996, 29188, 176412, 312310, 176412, 29188, 996, 1;
1, 2017, 95644, 910300, 2620582, 2620582, 910300, 95644, 2017, 1;
-
A141690 := proc(n,m)
2*A008292(n+1,m+1)-binomial(n,m) ;
end proc: # R. J. Mathar, Jul 12 2012
-
Table[Table[(2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]), {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
A143505
Triangle of coefficients of the polynomials x^(n - 1)*A(n,x + 1/x), where A(n,x) are the Eulerian polynomials of A008292.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 11, 14, 23, 14, 11, 1, 1, 26, 70, 104, 139, 104, 70, 26, 1, 1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1, 1, 120, 1197, 3016, 5970, 8568, 9549, 8568, 5970, 3016, 1197, 120, 1, 1, 247, 4300, 17101, 37105, 70474, 90069, 107241, 90069
Offset: 1
Triangle begins:
1;
1, 1, 1;
1, 4, 3, 4, 1;
1, 11, 14, 23, 14, 11, 1;
1, 26, 70, 104, 139, 104, 70, 26, 1;
1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018
-
Table[CoefficientList[FullSimplify[ExpandAll[(1 - x - 1/x)^(n + 1)*x^(n - 1)*PolyLog[-n, x + 1/x]/(x + 1/x)]], x], {n, 1, 10}]//Flatten
A157117
Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k), read by rows.
Original entry on oeis.org
2, 1, 1, 1, 8, 1, 1, 131, 131, 1, 1, 8204, 29216, 8204, 1, 1, 2097187, 44136233, 44136233, 2097187, 1, 1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1, 1, 8796093022411, 150092195453359483, 288159195861579519, 288159195861579519, 150092195453359483, 8796093022411, 1
Offset: 0
2;
1, 1;
1, 8, 1;
1, 131, 131, 1;
1, 8204, 29216, 8204, 1;
1, 2097187, 44136233, 44136233, 2097187, 1;
1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1;
-
Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
f:= func< n,k | k le n select Eulerian(n*k+1,n-k) else Eulerian(n*(n-k)+1, k) >;
A157117:= func< n,k | f(n,k) + f(n,n-k) >;
[A157117(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
-
f[n_, k_]:= If[k<=n, Eulerian[n*k+1,n-k], Eulerian[n*(n-k)+1,k]];
T[n_, k_]:= f[n,k] + f[n,n-k];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
-
def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
def f(n,k): return Eulerian(n*k+1,n-k) if (kA157117(n,k): return f(n,k) + f(n,n-k)
flatten([[A157117(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022
A159346
Triangle read by rows: every third term of every third row of A008292.
Original entry on oeis.org
1, 1, 1, 1, 2416, 1, 1, 455192, 455192, 1, 1, 45533450, 2275172004, 45533450, 1, 1, 3572085255, 3207483178157, 3207483178157, 3572085255, 1, 1, 251732291184, 2527925001876036, 37307713155613000, 2527925001876036, 251732291184, 1, 1, 16871482830550, 1454842842001939656
Offset: 0
Triangle begins:
{1},
{1, 1},
{1, 2416, 1},
{1, 455192, 455192, 1},
{1, 45533450, 2275172004, 45533450, 1},
{1, 3572085255, 3207483178157, 3207483178157, 3572085255, 1},
...
-
<< DiscreteMath`Combinatorica`
k = 3;
a = Table[Table[Eulerian[n + 1, k*m], {m, 0, Floor[n/k]}], {n, 0, 10*k,k}];
Flatten[%]
A014469
Triangular array formed from odd elements to right of middle of rows of the triangle of Eulerian numbers (A008292).
Original entry on oeis.org
1, 1, 11, 1, 1, 57, 1, 1191, 1, 15619, 4293, 247, 1, 1, 1013, 1, 152637, 1, 10187685, 478271, 4083, 1, 423281535, 1, 12843262863, 2571742175, 16369, 1, 311387598411, 15041229521, 13824739, 1, 6382798925475, 3207483178157, 782115518299
Offset: 1
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.
Comments