A137375
Triangle read by rows, T(n,k) = (-1)^k*{{n,k}} where {{n,k}} are the second-order Stirling set numbers, n>=0, 0<=k<=n/2.
Original entry on oeis.org
1, 0, 0, -1, 0, -1, 0, -1, 3, 0, -1, 10, 0, -1, 25, -15, 0, -1, 56, -105, 0, -1, 119, -490, 105, 0, -1, 246, -1918, 1260, 0, -1, 501, -6825, 9450, -945, 0, -1, 1012, -22935, 56980, -17325, 0, -1, 2035, -74316, 302995, -190575, 10395, 0, -1, 4082, -235092
Offset: 0
[ 0] 1;
[ 1] 0;
[ 2] 0, -1;
[ 3] 0, -1;
[ 4] 0, -1, 3;
[ 5] 0, -1, 10;
[ 6] 0, -1, 25, -15;
[ 7] 0, -1, 56, -105;
[ 8] 0, -1, 119, -490, 105;
[ 9] 0, -1, 246, -1918, 1260;
[10] 0, -1, 501, -6825, 9450, -945;
- J. Riordan, Introduction to Combinatory Analysis, Wiley, New York, 1958.
- L. Carlitz, The coefficients in an asymptotic expansion, Proc. Amer. Math. Soc. 16 (1965) 248-252.
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- V. Kruchinin, D. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, arXiv: 1211.0099 [math.NT], 2012.
- D. V. Kruchinin and V. V. Kruchinin, Explicit Formulas for Some Generalized Polynomials, Appl. Math. Inf. Sci. 7, No. 5, 2083-2088 (2013).
- Andrew Elvey Price, Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- L. M. Smiley, Completion of a rational function sequence of Carlitz, arXiv:math/0006106 [math.CO], 2000.
- E. W. Weisstein, Mahler Polynomial.
-
A137375 := proc(n, k) if n = 0 then 1 else
add(binomial(j,n-2*k)* combinat[eulerian2](n-k,n-k-j-1), j=(0..n-k-1))*(-1)^k fi end: for n from 0 to 9 do seq(A137375(n, k), k=(0..n/2)) od; # Peter Luschny, Dec 01 2012
-
Clear[p, x, t] p[t_] = Exp[x*(1 + t - Exp[t])]; Table[ ExpandAll[n!* SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}] a = Table[ CoefficientList[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a];
Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^j, {j, 0, k}], {n, 0, 15}, {k, 0, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
-
T(n,k):=sum(binomial(n,k-j)*stirling2(n-k+j,j)*(-1)^(j),j,0,k); /* Vladimir Kruchinin, Jan 13 2012 */
-
def A137375(n, k): return add(binomial(n,k-j)*(-1)^j*stirling_number2(n-k+j,j) for j in (0..k))
for n in range(11):
[A137375(n, k) for k in (0..n//2)] # Peter Luschny, Dec 01 2012
A059025
Triangle of Stirling numbers of order 6.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 462, 1, 1716, 1, 4719, 1, 11440, 1, 25883, 1, 56134, 1, 118456, 2858856, 1, 245480, 23279256, 1, 502588, 124710300, 1, 1020680, 551496660, 1, 2061709, 2181183147, 1, 4149752, 8021782197, 1, 8333153, 28051272535
Offset: 6
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
There are 462 ways of partitioning a set N of cardinality 12 into 2 blocks each of cardinality at least 6, so S_6(12,2)=462.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- Michael De Vlieger, Table of n, a(n) for n = 6..13205 (rows n = 6..400, flattened).
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 5.
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
-
S6[n_ /; 6 <= n <= 11, 1] = 1; S6[n_, k_] /; 1 <= k <= Floor[n/6] := S6[n, k] = k*S6[n-1, k] + Binomial[n-1, 5]*S6[n-6, k-1]; S6[, ] = 0; Flatten[ Table[ S6[n, k], {n, 6, 24}, {k, 1, Floor[n/6]}]] (* Jean-François Alcover, Feb 21 2012 *)
A139541
There are 4*n players who wish to play bridge at n tables. Each player must have another player as partner and each pair of partners must have another pair as opponents. The choice of partners and opponents can be made in exactly a(n)=(4*n)!/(n!*8^n) different ways.
Original entry on oeis.org
1, 3, 315, 155925, 212837625, 618718975875, 3287253918823875, 28845653137679503125, 388983632561608099640625, 7637693625347175036443671875, 209402646126143497974176151796875, 7752714167528210725497923667975703125, 377130780679409810741846496828678078515625
Offset: 0
- G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.
A290586
Number of irredundant sets in the n X n rook graph.
Original entry on oeis.org
2, 11, 94, 1185, 20106, 453271, 13169346, 476777153, 20869990066, 1076251513071, 64077661097418, 4337014196039377, 329768528011095642, 27905789218764082151, 2608140451597365915346, 267506385903592339178241, 29943760423790270319833826
Offset: 1
-
s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}];
c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n!*StirlingS2[i, n])*x^i, {i, 0, m - 1}];
p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k,0, m - 1}];
Table[2*n^n - n! + p[n, n, 1], {n, 30}]
(* Indranil Ghosh, Aug 12 2017, after PARI code *)
-
\\ here s(n,k) is A008299, 2*n^n - n! is A248744.
s(n,k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
c(m,n,x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i);
p(m,n,x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m,k) * binomial(n,r) * k! * s(r,k) * x^r * c(m-k,n-r,x) ))}
a(n) = 2*n^n - n! + p(n,n,1); \\ Andrew Howroyd, Aug 11 2017
A131106
Rectangular array read by antidiagonals: k objects are each put into one of n boxes, independently with equal probability. a(n, k) is the expected number of boxes with exactly one object (n, k >= 1). Sequence gives the numerators.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 3, 4, 1, 0, 1, 8, 27, 32, 5, 0, 1, 5, 48, 27, 80, 3, 0, 1, 12, 25, 256, 405, 64, 7, 0, 1, 7, 108, 125, 256, 729, 448, 1, 0, 1, 16, 147, 864, 3125, 6144, 5103, 1024, 9, 0, 1, 9, 64, 343, 6480, 3125, 28672, 2187, 256, 5, 0, 1, 20, 243, 2048, 12005
Offset: 1
Array begins:
1 0 0 0 0 0 ...
1 1 3/4 1/2 5/16 3/16 ...
1 4/3 4/3 32/27 80/81 64/81 ...
...
A278987
Array read by antidiagonals downwards: T(b,n) = number of words of length n over an alphabet of size b that are in standard order and which have the property that every letter that appears in the word is repeated.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 0, 1, 11, 4, 1, 1, 0, 1, 26, 11, 4, 1, 1, 0, 1, 57, 41, 11, 4, 1, 1, 0, 1, 120, 162, 41, 11, 4, 1, 1, 0, 1, 247, 610, 162, 41, 11, 4, 1, 1, 0, 1, 502, 2165, 715, 162, 41, 11, 4, 1, 1, 0, 1, 1013, 7327, 3425, 715, 162, 41, 11, 4, 1, 1, 0
Offset: 1
The array begins:
0,.1,..1,...1,...1,...1,...1,....1..; b=1,
0,.1,..4,...8,..16,..32,..64,..128..; b=2,
0,.1,..4,..14,..41,.122,.365,.1094..; b=3,
0,.1,..4,..14,..51,.187,.715,.2795..; b=4,
0,.1,..4,..14,..51,.202,.855,.3845..; b=5,
0,.1,..4,..14,..51,.202,.876,.4111..; b=6,
...
Rows b=1 through b=4 of the array are A000012, A000295 (or A130103), A278988, A278989.
The words for b=9 are listed in
A273978.
-
with(combinat);
A008299 := proc(n,k) local i,j,t1;
if k<1 or k>floor(n/2) then t1:=0; else
t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end;
f3:=proc(L,b) global A008299; local i; add(A008299(L,i),i=1..b); end;
Q3:=b->[seq(f3(L,b),L=1..40)];
for b from 1 to 6 do lprint(Q3(b)); od:
A290818
Array read by antidiagonals: T(m,n) = number of irredundant sets in the lattice (rook) graph K_m X K_n.
Original entry on oeis.org
2, 3, 3, 4, 11, 4, 5, 24, 24, 5, 6, 47, 94, 47, 6, 7, 88, 272, 272, 88, 7, 8, 163, 774, 1185, 774, 163, 8, 9, 304, 2230, 4280, 4280, 2230, 304, 9, 10, 575, 6542, 15781, 20106, 15781, 6542, 575, 10, 11, 1104, 19452, 60604, 88512, 88512, 60604, 19452, 1104, 11
Offset: 1
Array begins:
===============================================================
m\n| 1 2 3 4 5 6 7 8
---+-----------------------------------------------------------
1 | 2 3 4 5 6 7 8 9 ...
2 | 3 11 24 47 88 163 304 575 ...
3 | 4 24 94 272 774 2230 6542 19452 ...
4 | 5 47 272 1185 4280 15781 60604 240073 ...
5 | 6 88 774 4280 20106 88512 400728 1879744 ...
6 | 7 163 2230 15781 88512 453271 2326534 12363513 ...
7 | 8 304 6542 60604 400728 2326534 13169346 76446456 ...
8 | 9 575 19452 240073 1879744 12363513 76446456 476777153 ...
...
-
s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}];
c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n!*StirlingS2[i, n])*x^i, {i, 0, m - 1}];
p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k,0, m - 1}];
b[m_, n_, x_]:=m^n*x^n + n^m*x^m - If[n<=m, n!*x^m*StirlingS2[m, n], m!*x^n*StirlingS2[n, m]];
T[m_, n_]:= b[m, n, 1] + p[m, n, 1];
Table[T[n, m -n + 1], {m, 10}, {n, m}]//Flatten
(* Indranil Ghosh, Aug 12 2017, after PARI code *)
-
\\ See A. Howroyd note in A290586 for explanation.
s(n,k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
c(m,n,x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i);
p(m,n,x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))}
b(m,n,x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2));
T(m,n) = b(m,n,1) + p(m,n,1);
for(m=1,10,for(n=1,m,print1(T(n,m-n+1),", ")));
A131103
Rectangular array read by antidiagonals: a(n, k) is the number of ways to put k labeled objects into n labeled boxes so that there are no boxes with exactly one object (n, k >= 1).
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 8, 1, 0, 5, 4, 21, 22, 1, 0, 6, 5, 40, 63, 52, 1, 0, 7, 6, 65, 124, 243, 114, 1, 0, 8, 7, 96, 205, 664, 969, 240, 1, 0, 9, 8, 133, 306, 1405, 3196, 3657, 494, 1, 0, 10, 9, 176, 427, 2556, 7425, 15712, 12987, 1004, 1, 0, 11, 10, 225, 568, 4207
Offset: 1
Array begins:
0 1 1 1 1 1 1
0 2 2 8 22 52 114
0 3 3 21 63 243 969
A131104
Rectangular array read by antidiagonals: a(n, k) is the number of ways to put k labeled objects into n labeled boxes so that there is one box with exactly one object (n, k >= 1).
Original entry on oeis.org
1, 2, 0, 3, 0, 0, 4, 0, 6, 0, 5, 0, 18, 8, 0, 6, 0, 36, 24, 10, 0, 7, 0, 60, 48, 120, 12, 0, 8, 0, 90, 80, 420, 396, 14, 0, 9, 0, 126, 120, 1000, 1512, 1092, 16, 0, 10, 0, 168, 168, 1950, 3720, 6804, 2736, 18, 0, 11, 0, 216, 224, 3360, 7380, 23240, 31008, 6480, 20, 0, 12, 0
Offset: 1
Array begins:
1 0 0 0 0 0 0
2 0 6 8 10 12 14
3 0 18 24 120 396 1092
A131105
Rectangular array read by antidiagonals: a(n, k) is the number of ways to put k labeled objects into n labeled boxes so that there are exactly two boxes with exactly one object (n, k >= 2).
Original entry on oeis.org
2, 6, 0, 12, 0, 0, 20, 0, 36, 0, 30, 0, 144, 60, 0, 42, 0, 360, 240, 90, 0, 56, 0, 720, 600, 1440, 126, 0, 72, 0, 1260, 1200, 6300, 5544, 168, 0, 90, 0, 2016, 2100, 18000, 26460, 17472, 216, 0, 110, 0, 3024, 3360, 40950, 78120, 136080, 49248, 270, 0, 132, 0, 4320
Offset: 2
Array begins:
2 0 0 0 0 0
6 0 36 60 90 126
12 0 144 240 1440 5544
Comments