cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A257493 Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 21, 24, 1, 1, 1, 5, 55, 282, 120, 1, 1, 1, 6, 120, 2008, 6210, 720, 1, 1, 1, 7, 231, 10147, 153040, 202410, 5040, 1, 1, 1, 8, 406, 40176, 2224955, 20933840, 9135630, 40320, 1, 1, 1, 9, 666, 132724, 22069251, 1047649905, 4662857360, 545007960, 362880, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 26 2015

Keywords

Comments

Also the number of ordered factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity). A(2,2) = 3: (2*3)^2 = 36 = 4*9 = 6*6 = 9*4.

Examples

			Square array A(n,k) begins:
  1,   1,      1,        1,          1,           1,            1, ...
  1,   1,      1,        1,          1,           1,            1, ...
  1,   2,      3,        4,          5,           6,            7, ...
  1,   6,     21,       55,        120,         231,          406, ...
  1,  24,    282,     2008,      10147,       40176,       132724, ...
  1, 120,   6210,   153040,    2224955,    22069251,    164176640, ...
  1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...
		

Crossrefs

Rows n=0+1, 2-9 give: A000012, A000027(k+1), A002817(k+1), A001496, A003438, A003439, A008552, A160318, A160319.
Main diagonal gives A110058.
Cf. A257463 (unordered factorizations), A333733 (non-isomorphic matrices), A008300 (binary matrices).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=1, 1, add(
          `if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
  • PARI
    T(n, k)={
      local(M=Map(Mat([n, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
    } \\ Andrew Howroyd, Apr 04 2020
  • Sage
    bigomega = sloane.A001222
    @cached_function
    def b(n, k):
        if n == 1:
            return 1
        return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors())
    def A(n, k):
        return b(prod(nth_prime(i) for i in (1..n))^k, k)
    [A(n, d-n) for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018, translated from Maple
    
  • Sage
    from sage.combinat.integer_matrices import IntegerMatrices
    [IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018
    

A001499 Number of n X n matrices with exactly 2 1's in each row and column, other entries 0.

Original entry on oeis.org

1, 0, 1, 6, 90, 2040, 67950, 3110940, 187530840, 14398171200, 1371785398200, 158815387962000, 21959547410077200, 3574340599104475200, 676508133623135814000, 147320988741542099484000, 36574751938491748341360000, 10268902998771351157327104000
Offset: 0

Views

Author

Keywords

Comments

Or, number of labeled 2-regular relations of order n.
Also number of ways to arrange 2n rooks on an n X n chessboard, with no more than 2 rooks in each row and column (no 3 in a line). - Vaclav Kotesovec, Aug 03 2013

References

  • R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, Sect. 6.3 Multipermutations, pp. 235-236, P(n,2), bipermutations.
  • L. Erlebach and O. Ruehr, Problem 79-5, SIAM Review. Solution by D. E. Knuth. Reprinted in Problems in Applied Mathematics, ed. M. Klamkin, SIAM, 1990, p. 350.
  • Shanzhen Gao and Kenneth Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
  • J. T. Lewis, Maximal L-free subsets of a squarefree array, Congressus Numerantium, 141 (1999), 151-155.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (b).
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
  • J. H. van Lint and R. M. Wilson, A Course in Combinatorics (Cambridge University Press, Cambridge, 1992), pp. 152-153. [The second edition is said to be a better reference.]

Crossrefs

Cf. A000681, A053871, A123544 (connected relations), A000986 (symmetric matrices), A007107 (traceless matrices).
Cf. A001501. Column 2 of A008300. Row sums of A284989.

Programs

  • Haskell
    a001499 n = a001499_list !! n
    a001499_list = 1 : 0 : 1 : zipWith (*) (drop 2 a002411_list)
       (zipWith (+) (zipWith (*) [3, 5 ..] $ tail a001499_list)
                    (zipWith (*) (tail a000290_list) a001499_list))
    -- Reinhard Zumkeller, Jun 02 2013
  • Mathematica
    a[n_] := (n-1)*n!*Gamma[n-1/2]*Hypergeometric1F1[2-n, 3/2-n, -1/2]/Sqrt[Pi]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 06 2011, after first formula *)
  • PARI
    a(n)=if(n<2,n==0,(n^2-n)*(a(n-1)+(n-1)/2*a(n-2)))
    
  • PARI
    seq(n)={Vec(serlaplace(serlaplace(exp(-x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n)))))}; \\ Andrew Howroyd, Sep 09 2018
    

Formula

a(n) = (n! (n-1) Gamma(n-1/2) / Gamma(1/2) ) * 1F1[2-n; 3/2-n; -1/2] [Erlebach and Ruehr]. This representation is exact, asymptotic and convergent.
D-finite with recurrence 2*a(n) -2*n*(n-1)*a(n-1) -n*(n-1)^2*a(n-2)=0.
a(n) ~ 2 sqrt(Pi) n^(2n + 1/2) e^(-2n - 1/2) [Knuth]
a(n) = (1/2)*n*(n-1)^2 * ( (2*n-3)*a(n-2) + (n-2)^2*a(n-3) ) (from Anand et al.)
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(-x/2)/sqrt(1-x); a(n) = n(n-1)/2 [ 2 a(n-1) + (n-1) a(n-2) ] (Bricard)
b_n = a_n/n! satisfies b_n = (n-1)(b_{n-1} + b_{n-2}/2); e.g.f. for {b_n} and for derangements (A000166) are related by D(x) = B(x)^2.
Limit_(n->infinity) sqrt(n)*a(n)/(n!)^2 = A096411 [Kuczma]. - R. J. Mathar, Sep 21 2007
a(n) = 4^(-n) * n!^2 * Sum_{i=0..n} (-2)^i * (2*n - 2*i)! / (i!*(n-i)!^2). - Shanzhen Gao, Feb 15 2010

A202784 T(n,k) is the number of n X n 0..k arrays with row and column sums equal.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 14, 1, 1, 5, 16, 87, 140, 1, 1, 6, 25, 340, 5673, 4322, 1, 1, 7, 36, 1001, 89520, 2577513, 434542, 1, 1, 8, 49, 2442, 790425, 290838284, 8459809773, 144109562, 1, 1, 9, 64, 5215, 4756140, 11991502235, 12092687195284, 207495141083975, 165431317452, 1
Offset: 0

Views

Author

R. H. Hardin, Dec 24 2011

Keywords

Examples

			Table starts
n\k | 0            1               2              3                4
----+-------------------------------------------------------------------
  0 | 1            1               1              1                1 ...
  1 | 1            2               3              4                5 ...
  2 | 1            4               9             16               25 ...
  3 | 1           14              87            340             1001 ...
  4 | 1          140            5673          89520           790425 ...
  5 | 1         4322         2577513      290838284      11991502235 ...
  6 | 1       434542      8459809773 12092687195284 3632894572698505 ...
  7 | 1    144109562 207495141083975 ...
  8 | 1 165431317452 ...
  ...
Some solutions for n=4 k=3
..3..1..2..1....2..2..0..3....1..1..1..2....1..3..0..0....1..2..0..2
..2..3..2..0....1..2..2..2....3..0..1..1....1..0..1..2....3..1..0..1
..2..2..0..3....3..0..3..1....0..3..2..0....2..0..1..1....0..0..3..2
..0..1..3..3....1..3..2..1....1..1..1..2....0..1..2..1....1..2..2..0
		

Crossrefs

Extensions

Added crossrefs. - R. H. Hardin, Jan 05 2012
Row and column zero inserted by Andrew Howroyd, Oct 14 2024

A001501 Number of n X n 0-1 matrices with all column and row sums equal to 3.

Original entry on oeis.org

1, 0, 0, 1, 24, 2040, 297200, 68938800, 24046189440, 12025780892160, 8302816499443200, 7673688777463632000, 9254768770160124288000, 14255616537578735986867200, 27537152449960680597739468800, 65662040698002721810659005184000
Offset: 0

Views

Author

Keywords

Comments

Also, for n >= 3, number of bicubical graphs on 2n labeled nodes of two colors [Read, 1958, 1971] - N. J. A. Sloane, Sep 08 2014
Also number of ways to arrange 3n rooks on an n X n chessboard, with no more than 3 rooks in each row and column (no 4 in a line). - Vaclav Kotesovec, Aug 03 2013

Examples

			G.f. = 1 + x^3 + 24*x^4 + 2040*x^5 + 297200*x^6 + 68938800*x^7 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 236, P(n,3).
  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 1.1.3, page 2, f(n).
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.

Crossrefs

Cf. A001499. Column 3 of A008300. Row sums of A284990.

Programs

  • Maple
    a:= n-> n!^2/6^n *add(add((-1)^b *2^a *3^b *(3*n-3*a-2*b)!/
            (a! *b! *(n-a-b)!^2 *6^(n-a-b)), b=0..n-a), a=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 20 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, (n-1)*(n-2)/2,
          n*(n-1)*(9*(3*n^2-5*n+4)*a(n-1)+(3*n-6)*(3*n+1)*
          (n-1)*a(n-2)+(9*n^2-30*n+13)*(n-1)*(n-2)^2*a(n-3)
          -(3*n-2)*(n-1)*(n-2)^2*(n-3)^2*a(n-4))/(36*n-60))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 13 2017
  • Mathematica
    Table[6^(-n) Total[Map[(-1)^#[[2]] n!^2 (#[[2]] + 3 #[[3]])! 2^#[[1]] 3^#[[2]]/(#[[1]]! #[[2]]! #[[3]]!^2 6^#[[3]]) &, Compositions[n, 3]]], {n, 0, 20}] (* Geoffrey Critzer, Mar 19 2011 *)
    a[n_] := n!^2*Sum[2^(2k-n)*3^(k-n)*(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 07 2018 *)
  • PARI
    {a(n) = local(k); if( n<0, 0, n!^2 * sum(j=0, n, sum(i=0, n-j, if(1, k=n-i-j; (j + 3*k)! / (3^i * 36^k * i! * k!^2))) / (j! * (-2)^j)))}; /* Michael Somos, May 28 2002 */

Formula

a(n) = n!^2/6^n * Sum_{a=0..n} Sum_{b=0..n-a} (-1)^b * 2^a * 3^b * (3*n-3*a-2*b)! / (a! * b! * (n-a-b)!^2 * 6^(n-a-b)). - Shanzhen Gao, Feb 19 2010
D-finite with recurrence: 12*(3*n-5)*a(n) = 9*n*(3*n^2-5*n+4)*(n-1)*a(n-1) + 3*(n-2)*n*(3*n+1)*(n-1)^2*a(n-2) + (n-2)^2*n*(9*n^2-30*n+13)*(n-1)^2*a(n-3) - (n-3)^2*(n-2)^2*n*(3*n-2)*(n-1)^2*a(n-4). - Vaclav Kotesovec, Aug 03 2013
a(n) ~ sqrt(6*Pi) * (3/4)^n * n^(3*n+1/2) / exp(3*n+2). - Vaclav Kotesovec, Aug 03 2013

Extensions

Additional comments from Michael Somos, May 28 2002

A133687 Triangle with number of equivalence classes of n X n matrices over {0,1} with rows and columns summing to k (0<=k<=n), where equivalence is defined by row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 7, 4, 1, 1, 1, 1, 4, 16, 16, 4, 1, 1, 1, 1, 7, 51, 194, 51, 7, 1, 1, 1, 1, 8, 224, 3529, 3529, 224, 8, 1, 1, 1, 1, 12, 1165, 121790, 601055, 121790, 1165, 12, 1, 1, 1, 1, 14, 7454, 5582612, 156473848, 156473848, 5582612, 7454, 14, 1, 1
Offset: 0

Views

Author

Joost Vermeij (joost_vermeij(AT)live.nl), Jan 04 2008

Keywords

Comments

T(n,k) = T(n,n-k). When 0 and 1 are switched, the number of equivalence classes remain the same.
Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A008300. Burnside's lemma can be used to extend this method to the unlabeled case. This seems to require looping over partitions for both rows and columns. The number of partitions squared increases rapidly with n. For example, A000041(20)^2 = 393129. - Andrew Howroyd, Apr 03 2020

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 1,   1;
  1, 1, 2,   1,    1;
  1, 1, 2,   2,    1,    1;
  1, 1, 4,   7,    4,    1,   1;
  1, 1, 4,  16,   16,    4,   1, 1;
  1, 1, 7,  51,  194,   51,   7, 1, 1;
  1, 1, 8, 224, 3529, 3529, 224, 8, 1, 1;
  ...
		

Crossrefs

Columns k=0..5 are A000012, A000012, A002865, A000512, A000513, A000516.
Row sums are A333681.
T(2n,n) gives A333740.
Cf. A000519, A008300 (labeled case), A008327 (bipartite graphs), A333159 (symmetric case).

Formula

Sum_{k=1..n} T(n, k) = A000519(n).

Extensions

Missing a(72) inserted by Andrew Howroyd, Apr 01 2020

A334549 Array read by antidiagonals: T(n,k) is the number of {-1,0,1} n X k matrices with all rows and columns summing to zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 19, 31, 19, 1, 1, 1, 1, 51, 175, 175, 51, 1, 1, 1, 1, 141, 991, 2371, 991, 141, 1, 1, 1, 1, 393, 5881, 32611, 32611, 5881, 393, 1, 1, 1, 1, 1107, 35617, 481381, 1084851, 481381, 35617, 1107, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, May 09 2020

Keywords

Comments

Equivalently, the number of n X k 0..2 arrays with row sums k and column sums n.

Examples

			Array begins:
====================================================================
n\k | 0 1   2     3       4          5            6            7
----|---------------------------------------------------------------
  0 | 1 1   1     1       1          1            1            1 ...
  1 | 1 1   1     1       1          1            1            1 ...
  2 | 1 1   3     7      19         51          141          393 ...
  3 | 1 1   7    31     175        991         5881        35617 ...
  4 | 1 1  19   175    2371      32611       481381      7343449 ...
  5 | 1 1  51   991   32611    1084851     39612501   1509893001 ...
  6 | 1 1 141  5881  481381   39612501   3680774301 360255871641 ...
  7 | 1 1 393 35617 7343449 1509893001 360255871641 ...
     ...
The T(3,2) = 7 matrices are:
  [0 0]  [ 0  0]  [ 0  0]  [ 1 -1]  [-1  1]  [ 1 -1]  [-1  1]
  [0 0]  [ 1 -1]  [-1  1]  [ 0  0]  [ 0  0]  [-1  1]  [ 1 -1]
  [0 0]  [-1  1]  [ 1 -1]  [-1  1]  [ 1 -1]  [ 0  0]  [ 0  0]
		

Crossrefs

Main diagonal is A172645.
Cf. A008300, A333901, A376935, A377063 (up to row permutations).

Formula

T(n,k) = T(k,n).

A376935 Array read by antidiagonals: T(n,k) is the number of 2*n X 2*k binary matrices with all row sums k and column sums n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 20, 90, 20, 1, 1, 70, 1860, 1860, 70, 1, 1, 252, 44730, 297200, 44730, 252, 1, 1, 924, 1172556, 60871300, 60871300, 1172556, 924, 1, 1, 3432, 32496156, 14367744720, 116963796250, 14367744720, 32496156, 3432, 1, 1, 12870, 936369720, 3718394156400, 273957842462220, 273957842462220, 3718394156400, 936369720, 12870, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 11 2024

Keywords

Comments

T(n,k) is the number of 2*n X 2*k {-1,1} matrices with all rows and columns summing to zero.

Examples

			Array begins:
========================================================================
n\k | 0   1       2           3               4                   5 ...
----+------------------------------------------------------------------
  0 | 1   1       1           1               1                   1 ...
  1 | 1   2       6          20              70                 252 ...
  2 | 1   6      90        1860           44730             1172556 ...
  3 | 1  20    1860      297200        60871300         14367744720 ...
  4 | 1  70   44730    60871300    116963796250     273957842462220 ...
  5 | 1 252 1172556 14367744720 273957842462220 6736218287430460752 ...
  ...
		

Crossrefs

Main diagonal is A058527.
Cf. A008300, A195644, A333901, A334549, A377007 (up to permutations of rows and columns).

Programs

  • PARI
    T(n, k)={
      local(M=Map(Mat([2*k, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(i, p, v, e) = if(i<0, if(!e, acc(p, v)), my(t=polcoef(p,i)); for(j=0, min(t, e), self()(i-1, p+j*(x-1)*x^i, binomial(t, j)*v, e-j))));
      for(r=1, 2*n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-1, src[i, 1], src[i, 2], k))); vecsum(Mat(M)[,2]);
    }

Formula

T(n,k) = T(k,n).

A321720 Number of non-normal (0,1) semi-magic squares with sum of entries equal to n.

Original entry on oeis.org

1, 1, 2, 6, 25, 120, 726, 5040, 40410, 362881, 3630840, 39916800, 479069574, 6227020800, 87181402140, 1307674370040, 20922977418841, 355687428096000, 6402388104196400, 121645100408832000, 2432903379962038320, 51090942171778378800, 1124000886592995642000, 25852016738884976640000
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer matrix with row sums and column sums all equal to d, for some d|n.

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

a(p) = p! for p prime as the squares are all permutation matrices of order p and a(n) >= n! for n > 1 (see comments in A321717 and A321719). - Chai Wah Wu, Jan 13 2019
a(n) = Sum_{d|n, d<=n/d} A008300(n/d, d) for n > 0. - Andrew Howroyd, Apr 11 2020

Extensions

a(7) from Chai Wah Wu, Jan 13 2019
a(8)-a(15) from Chai Wah Wu, Jan 14 2019
a(16)-a(21) from Chai Wah Wu, Jan 16 2019
Terms a(22) and beyond from Andrew Howroyd, Apr 11 2020

A058528 Number of n X n (0,1) matrices with all column and row sums equal to 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 120, 67950, 68938800, 116963796250, 315031400802720, 1289144584143523800, 7722015017013984456000, 65599839591251908982712750, 769237071909157579108571190000, 12163525741347497524178307740904300
Offset: 0

Views

Author

David desJardins, Dec 22 2000

Keywords

Comments

Further terms generated by a Mathematica program written by Gordon G. Cash, who thanks B. R. Perez-Salvador, Universidad Autonoma Metropolitana Unidad Iztapalapa, Mexico, for providing the algorithm on which this program was based.
Also number of ways to arrange 4n rooks on an n X n chessboard, with no more than 4 rooks in each row and column. - Vaclav Kotesovec, Aug 04 2013
Generally (Canfield + McKay, 2004), a(n) ~ exp(-1/2) * binomial(n,s)^(2*n) / binomial(n^2,s*n), or a(n) ~ sqrt(2*Pi) * exp(-n*s-1/2*(s-1)^2) * (n*s)^(n*s+1/2) * (s!)^(-2*n). - Vaclav Kotesovec, Aug 04 2013

Examples

			a(4) = 1 because there is only one possible 4 X 4 (0,1) matrix with all row and column sums equal to 4, the matrix of all 1's. a(5) = 120 = 5! because there are 5X4X3X2X1 ways of placing a zero in each successive column (row) so that it is not in the same row (column) as any previously placed.
		

References

  • B. R. Perez-Salvador, S. de los Cobos Silva, M. A. Gutierrez-Andrade and A. Torres-Chazaro, A Reduced Formula for Precise Numbers of (0,1) Matrices in a(R,S), Disc. Math., 2002, 256, 361-372.

Crossrefs

Column 4 of A008300. Row sums of A284991.

Formula

a(n) = 24^{-n} sum_{alpha +beta + gamma + mu + u =n}frac{3^{ gamma }(-6)^{beta +u }8^{ mu }(n!)^{2}(4alpha +2 gamma + mu )!(beta +2 gamma )!}{alpha!beta! gamma! mu!u!} sum_{i=0}^{ floor (beta +2 gamma )/2 }frac{1}{24^{alpha - gamma +i}2^{beta +2 gamma -i}i!(beta +2 gamma -2i)!(alpha - gamma +i)!} - Shanzhen Gao, Nov 07 2007
From Vaclav Kotesovec, Aug 04 2013: (Start)
a(n) ~ exp(-1/2)*C(n,4)^(2*n)/C(n^2,4*n), (Canfield + McKay, 2004).
a(n) ~ sqrt(Pi)*2^(2*n+3/2)*9^(-n)*exp(-4*n-9/2)*n^(4*n+1/2).
(End)

Extensions

More terms from Gordon G. Cash (cash.gordon(AT)epa.gov), Oct 22 2002
More terms from Vladeta Jovovic, Nov 12 2006

A260340 Triangle read by rows: T(n,k) = number of sets of linear n-ads in k variables.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 22, 22, 1, 1, 1, 1, 130, 550, 130, 1, 1, 1, 1, 822, 16700, 16700, 822, 1, 1, 1, 1, 6202, 703297, 3330915, 703297, 6202, 1, 1, 1, 1, 52552, 38135272, 957659906, 957659906, 38135272, 52552, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

T(n,k) is the number of nonequivalent n X n binary matrices with k ones in every row and column up to permutation of rows. - Andrew Howroyd, Apr 18 2020

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,    1;
  1, 1,    1,      1;
  1, 1,    6,      1,       1;
  1, 1,   22,     22,       1,      1;
  1, 1,  130,    550,     130,      1,    1;
  1, 1,  822,  16700,   16700,    822,    1, 1;
  1, 1, 6202, 703297, 3330915, 703297, 6202, 1, 1;
  ...
		

Crossrefs

Columns k=0..4 are A000012, A000012, A002137, A333899, A333900.
Row sums are A333891.

Formula

T(n,k) = T(n,n-k). - Andrew Howroyd, Apr 18 2020

Extensions

Extended to include k=0 and more terms added by Andrew Howroyd, Apr 18 2020
Showing 1-10 of 28 results. Next