cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A370260 a(n) = sqrt(A370259(2*n+1)).

Original entry on oeis.org

1, 3, 31, 617, 18529, 748859, 38149567, 2348482961, 169641143873, 14071599763379, 1318414335714015, 137720427724123513, 15871136311527376801, 2000355821099358166891, 273735526097742996298111, 40419227378551955037029921, 6405616571975691389276400257
Offset: 0

Views

Author

Peter Bala, Mar 11 2024

Keywords

Comments

The sequence is conjectured to be integral [added 03 Mar 2024: now confirmed - see the Formula section].

Crossrefs

Programs

  • Maple
    A370259 := n -> simplify( (ChebyshevT(n, n+1) - 1)/n^3 ):
    seq(sqrt(A370259(2*n+1)), n = 0..20);
  • Mathematica
    Table[Sqrt[(ChebyshevT[k, k + 1] - 1)/k^3], {k, 1, 40, 2}] (* Paolo Xausa, Jul 24 2024 *)

Formula

a(n) = sqrt( (T(2*n+1, 2*n+2) - 1)/(2*n+1)^3 ), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = sqrt( Sum_{k = 1..2*n+1} (2^k)*(2*n + 1)^(k-2)*binomial(2*n + k + 1, 2*k)/(2*n + k + 1) ).
a(n) = Sum_{k = 0..n} binomial(n+k, n-k)/(2*k + 1) * (4*n + 2)^k (shows the sequence to be integral) = R(n,2), where R(n, x) is the n-th row polynomial of A370262. - Peter Bala, Apr 03 2024

A142994 Crystal ball sequence for the lattice C_5.

Original entry on oeis.org

1, 51, 501, 2471, 8361, 22363, 50973, 103503, 192593, 334723, 550725, 866295, 1312505, 1926315, 2751085, 3837087, 5242017, 7031507, 9279637, 12069447, 15493449, 19654139, 24664509, 30648559, 37741809, 46091811, 55858661, 67215511, 80349081
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

The lattice C_5 consists of all integer lattice points v = (x_1,...,x_5) in Z^5 such that (x_1 + ... + x_5) is even, equipped with the taxicab type norm ||v|| = (1/2) * (|x_1| + ... + |x_5|). The crystal ball sequence of C_5 gives the number of lattice points v in C_5 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
Partial sums of A019561.

Examples

			a(1) = 51. The origin has norm 0. The 50 lattice points in Z^5 of norm 1 (as defined above) are +-2*e_i, 1 <= i <= 5 and (+- e_i +- e_j), 1 <= i < j <= 5, where e_1, ... , e_5 denotes the standard basis of Z^5. These 50 vectors form a root system of type C_5. Hence the sequence begins 1, 1 + 50 = 51, ... .
		

Crossrefs

Row 5 of A142992. Cf. A019561, A063496, A142993.

Programs

  • Magma
    [(2*n+1)*(32*n^4+64*n^3+88*n^2+56*n+15)/15: n in [0..30]]; // Vincenzo Librandi, Dec 16 2015
  • Maple
    a := n -> (2*n+1)*(32*n^4+64*n^3+88*n^2+56*n+15)/15: seq(a(n), n = 0..20)
  • Mathematica
    CoefficientList[Series[(1 + 45 x + 210 x^2 + 210 x^3 + 45 x^4 + x^5)/(1 - x)^6, {x, 0, 33}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1},{1, 51, 501, 2471, 8361, 22363}, 25] (* Vincenzo Librandi, Dec 16 2015 *)
  • Python
    A142994_list, m = [], [512, -768, 352, -48, 2, 1]
    for _ in range(10**2):
        A142994_list.append(m[-1])
        for i in range(5):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    

Formula

a(n) = (2*n + 1)*(32*n^4 + 64*n^3 + 88*n^2 + 56*n + 15)/15.
a(n) = Sum_{k = 0..5} binomial(10, 2*k)*binomial(n+k, 5).
a(n) = Sum_{k = 0..5} binomial(10, 2*k+1)*binomial(n+k+1/2, 5).
O.g.f.: (1 + 45*x + 210*x^2 + 210*x^3 + 45*x^4 + x^5)/(1 - x)^6 = 1/(1 - x) * T(5, (1 + x)/(1 - x)), where T(n, x) denotes the Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/(n*a(n-1)*a(n)) = 2*log(2) - 41/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), for n > 5. - Vincenzo Librandi, Dec 16 2015
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(51 - 3/(59 - 60/(75 - 315/(99 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*5^2))))).
E.g.f.: exp(x)*(1 + 50*x + 400*x^2/2! + 1120*x^3/3! + 1280*x^4/4! + 512*x^5/5!).
Note that -T(10, i*sqrt(x)) = 1 + 50*x + 400*x^2 + 1120*x^3 + 1280*x^4 + 512*x^5. See A008310. (End)

A370261 a(n) = sqrt(A370259(2*n)/(n+1)) for n >= 1.

Original entry on oeis.org

1, 5, 65, 1449, 46561, 1968525, 103565057, 6531391313, 480749649601, 40482981221781, 3840053099665729, 405275779792031225, 47113209228513626017, 5982545638922153790749, 823992221632687352744961, 122360935410018418223907489, 19489013519781051891806113153
Offset: 1

Views

Author

Peter Bala, Mar 11 2024

Keywords

Comments

The sequence is conjectured to be integral.

Crossrefs

Programs

  • Maple
    A370259 := n -> simplify( (ChebyshevT(n, n+1) - 1)/n^3 ):
    seq(sqrt(A370259(2*n)/(n+1)), n = 1..20);
  • Mathematica
    Table[Sqrt[(ChebyshevT[2*n, 2*n + 1] - 1)/(2*n)^3/(n + 1)], {n, 20}] (* Paolo Xausa, Jul 24 2024 *)
  • Python
    from math import isqrt
    from sympy import chebyshevt
    def A370261(n): return isqrt((chebyshevt((m:=n<<1),m+1)-1)//((n+1)*m**3)) # Chai Wah Wu, Mar 13 2024

Formula

a(n) = sqrt( (T(2*n, 2*n+1) - 1)/((n+1)*(2*n)^3) ), where T(n, x) is the n-th Chebyshev polynomial of the first kind.

A081265 Triangle of coefficients of the polynomials a(n, x) = 2*a(n-1, x)+ x^2*a(n-2,x), n >= 1, a(0, x) = 1, a(1, x) = 1.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 4, 0, 3, 0, 8, 0, 8, 0, 1, 16, 0, 20, 0, 5, 0, 32, 0, 48, 0, 18, 0, 1, 64, 0, 112, 0, 56, 0, 7, 0, 128, 0, 256, 0, 160, 0, 32, 0, 1, 256, 0, 576, 0, 432, 0, 120, 0, 9, 0, 512, 0, 1280, 0, 1120, 0, 400, 0, 50, 0, 1, 1024, 0, 2816, 0, 2816, 0, 1232, 0, 220
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Unsigned Chebyshev numbers of the first kind. Columns include A011782, A001792, A001793, A001794, A006974.
For the Riordan coefficient triangle for Chebyshev's T-polynomials (decreasing odd or even powers of x) see A039991. - Wolfdieter Lang, Aug 06 2014

Examples

			Triangle rows are {1}, {1,0}, {2,0,1}, {4,0,3,0}, {8,0,8,0,1},.... [Corrected by _Philippe Deléham_, Dec 27 2007]
See the unsigned example under A039991. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Cf. A008310, A039991 (signed).

Formula

T(n,k) = [x^k] a(n,x), k = 0, 1, ..., n, with polynomial a(n,x) defined by the recurrence given as name. Its Binet-de Moivre form is a(n, x) = ((1+sqrt(x^2+1))^n + (1-sqrt(x^2+1))^n)/2.
O.g.f. for row polynomials a(n,x): (1-z)/(1 - 2*z - (x*z)^2). Compare with A039991.

Extensions

Edited. Name and formula clarified. G.f. of row polynomial, and crossref. A039991 added. - Wolfdieter Lang, Aug 06 2014

A152060 Triangle read by rows, characteristic polynomials of Cartan ring matrices.

Original entry on oeis.org

1, 1, -2, 1, -4, 3, 1, -6, 9, -4, 1, -8, 20, -16, 4, 1, -10, 35, -50, 25, -4, 1, -12, 54, -112, 105, -36, 4, 1, -14, 77, -210, 294, -196, 49, -4, 1, -16, 104, -352, 660, -672, 336, -64, 4, 1, -18, 135, -546, 1287, -1782, 1386, -540, 81, -4, 1, -20, 170, -800, 2275, -4004, 4290, -2640, 825, -100, 4
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
1;
1, -2;
1, -4, 3;
1, -6, 9, -4;
1, -8, 20, -16, 4;
1, -10, 35, -50, 25, -4;
1, -12, 54, -112, 105, -36, 4;
1, -14, 77, -210, 294, -196, 49, -4;
1, -16, 104, -352, 660, -672, 336, -64, 4;
1, -18, 135, -546, 1287, -1782, 1386, -540, 81, -4;
1, -20, 170, -800, 2275, -4004, 4290, -2640, 825, -100, 4;
...
Example: x^5 -10x^4 + 35x^3 -50x^2 + 25x - 4 = (x - 4) * (x^2 - 3x + 1)^2 is the characteristic polynomial of the matrix
[ 2,-1, 0, 0, 1]
[-1, 2,-1, 0, 0]
[ 0,-1, 2,-1, 0]
[ 0, 0,-1, 2,-1]
[ 1, 0, 0,-1, 2].
		

References

  • William G. Harter, University of Arkansas; personal communication

Crossrefs

Programs

  • Mathematica
    M[n_] := SparseArray[{Band[{1, 1}] -> 2, Band[{1, 2}] -> -1, Band[{2, 1}] -> -1, {1, n} -> 1, {n, 1} -> 1}, {n, n}];
    row[0] = {1}; row[1] = {1, -2};
    row[n_] := (-1)^n CharacteristicPolynomial[M[n], x] // CoefficientList[#, x]& // Reverse;
    Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Aug 08 2018 *)

Formula

Triangle read by rows, n-th row = characteristic polynomial of n X n Cartan ring matrix, defined as a Cartan matrix with 1's in the upper right and lower left corners, i.e., positions (1,n) and (n,1).
The coefficients of characteristic polynomials of matrices C_n, defined by
C_n=
(2 -1 0 ... 0 1)
(-1 2 -1 0 ... 0)
(0 -1 2 -1 0 ... 0)
...
(0 ... 0 -1 2 -1)
(1 0 ... 0 -1 2),
give the same triangle T(n,k), for n>0, k=0,...,n, with T(0,0)=1. - L. Edson Jeffery, Mar 27 2011
It appears that for n >= 3 the n-th row polynomial equals 2*T(2*n,sqrt(x)/2) + 2*(-1)^n, where T(n,x) denotes the Chebyshev polynomial of the first kind (A008310). Checked for n = 3 through n = 12. - Peter Bala, May 04 2014
Apparently, omitting the diagonal here, this triangular array is signed, reversed A156308 (cf. A127677, A217476, A263916). For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 12, 20, and 21) and Damianou and Evripidou (p. 7). - Tom Copeland, Nov 07 2015

Extensions

Edited by L. Edson Jeffery, Mar 26 2011
Some terms corrected from Peter Bala, May 04 2014

A175243 Array read by antidiagonals: total number of spanning trees R_n(m) of the complete prism K_m X C_n.

Original entry on oeis.org

1, 2, 1, 3, 12, 3, 4, 75, 294, 16, 5, 384, 11664, 16384, 125, 6, 1805, 367500, 5647152, 1640250, 1296, 7, 8100, 10609215, 1528823808, 6291456000, 259200000, 16807, 8, 35287, 292626432, 380008339280, 18911429680500, 13556617751088, 59549251454
Offset: 1

Views

Author

R. J. Mathar, Mar 13 2010

Keywords

Examples

			The array starts in row n=1 as:
  1,    1,        3,         16,        125
  2,   12,      294,      16384,    1640250
  3,   75,    11664,    5647152, 6291456000
  4,  384,   367500, 1528823808,
  5, 1805, 10609215,
		

Crossrefs

Cf. A006235 (column 2), A000272, A212798 (column 3).

Programs

  • Maple
    A175243 := proc(n,m) n*2^(m-1)/m*( orthopoly[T](n,1+m/2)-1)^(m-1) ; end proc:
    for d from 2 to 10 do for m from 1 to d-1 do n := d-m ; printf("%d,",A175243(n,m)) ; end do: end do:
  • Mathematica
    r[n_, m_] := n*2^(m-1)*(ChebyshevT[n, 1+m/2]-1)^(m-1)/m; Table[r[n-m, m], {n, 2, 9}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

R_n(m) = n*2^(m-1)* (T(n,1+m/2)-1)^(m-1)/m, where T(n,x) are Chebyshev polynomials, A008310.
Each column of the array is a linear divisibility sequence. Conjecturally, the k-th column satisfies a linear recurrence of order 4*k - 2. - Peter Bala, May 04 2014

A305549 Crystal ball sequence for the lattice C_6.

Original entry on oeis.org

1, 73, 985, 6321, 26577, 85305, 227305, 528865, 1110049, 2149033, 3898489, 6704017, 11024625, 17455257, 26751369, 39855553, 57926209, 82368265, 114865945, 157417585, 212372497, 282469881, 370879785, 481246113, 617731681, 785065321, 988591033, 1234319185
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2018

Keywords

Comments

Partial sums of A019562.

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, 6, binomial(12,2*k)*binomial(n+k,6))}
    
  • PARI
    Vec((1 + 6*x + x^2)*(1 + 60*x + 134*x^2 + 60*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Jun 09 2018

Formula

a(n) = (128*n^6 + 384*n^5 + 800*n^4 + 960*n^3 + 692*n^2 + 276*n + 45)/45.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7), for n > 6.
a(n) = Sum_{k = 0..6} binomial(12, 2*k)*binomial(n+k, 6).
G.f.: (1 + 6*x + x^2)*(1 + 60*x + 134*x^2 + 60*x^3 + x^4) / (1 - x)^7. - Colin Barker, Jun 09 2018
From Peter Bala, Mar 12 2024: (Start)
Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 7/5 - 2*log(2) = 1/(73 - 3/(81 - 60/(97 - 315/(121 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*6^2 - ...))))).
E.g.f.: exp(x)*(1 + 72*x + 840*x^2/2! + 3584*x^3/3! + 6912*x^4/4! + 6144*x^5/5! + 2048*x^6/6!).
Note that T(12, i*sqrt(x)) = 1 + 72*x + 840*x^2 + 3584*x^3 + 6912*x^4 + 6144*x^5 + 2048*x^6, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310.
Row 6 of A142992. (End)

A305721 Crystal ball sequence for the lattice C_7.

Original entry on oeis.org

1, 99, 1765, 14407, 74313, 284075, 880685, 2340495, 5529233, 11905267, 23784309, 44673751, 79684825, 136030779, 223619261, 355747103, 549905697, 828705155, 1220925445, 1762702695, 2498858857, 3484382923, 4786071885, 6484339631, 8675201969, 11472445971, 15009991829
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2018

Keywords

Comments

Partial sums of A019563.

Crossrefs

Programs

  • GAP
    b:=7;; List([0..30],n->Sum([0..b],k->Binomial(2*b,2*k)*Binomial(n+k,b))); # Muniru A Asiru, Jun 09 2018
  • Mathematica
    Array[Sum[Binomial[14, 2 k] Binomial[# + k, 7], {k, 0, 7}] &, 27, 0] (* Michael De Vlieger, Jun 11 2018 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,99,1765,14407,74313,284075,880685,2340495},30] (* Harvey P. Dale, May 16 2023 *)
  • PARI
    {a(n) = sum(k=0, 7, binomial(14, 2*k)*binomial(n+k, 7))}
    
  • PARI
    Vec((1 + x)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Jun 09 2018
    

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), for n > 7.
a(n) = Sum_{k = 0..7} binomial(14, 2*k)*binomial(n+k, 7).
G.f.: (1 + x)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6) / (1 - x)^8. - Colin Barker, Jun 09 2018
From Peter Bala, Mar 12 2024: (Start)
Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 2*ln(2) - 289/210 = 1/(99 - 3/(107 - 60/(123 - 315/(147 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*7^2 - ...))))).
E.g.f.: exp(x)*(1 + 98*x + 1568*x^2/2! + 9408*x^3/3! + 26880*x^4/4! + 39424*x^5/5! + 28672*x^6/6! + 8192*x^7/7!).
Note that -T(14, i*sqrt(x)) = 1 + 98*x + 1568*x^2 + 9408*x^3 + 26880*x^4 + 39424*x^5 + 28672*x^6 + 8192*x^7, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310.
Row 7 of A142992. (End)

A370262 Triangle read by rows: T(n, k) = binomial(n+k, n-k)/(2*k + 1) * (2*n + 1)^k.

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 1, 14, 49, 49, 1, 30, 243, 729, 729, 1, 55, 847, 5324, 14641, 14641, 1, 91, 2366, 26364, 142805, 371293, 371293, 1, 140, 5670, 101250, 928125, 4556250, 11390625, 11390625, 1, 204, 12138, 324258, 4593655, 36916282, 168962983, 410338673, 410338673
Offset: 0

Views

Author

Peter Bala, Mar 12 2024

Keywords

Comments

The table entries are integers since a(n, k) := binomial(n+k, n-k)/(2*k + 1) * (2*n + 1) gives the entries of the transpose of triangle A082985.

Examples

			Triangle begins
 n\k | 0    1      2       3        4        5        6
 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   0 | 1
   1 | 1    1
   2 | 1    5      5
   3 | 1   14     49      49
   4 | 1   30    243     729      729
   5 | 1   55    847    5324    14641    14641
   6 | 1   91   2366   26364   142805   371293   371293
  ...
		

Crossrefs

A371697 (row sums), A052750 (main diagonal and subdiagonal), A000330 (column 1).

Programs

  • Maple
    seq(seq(binomial(n+k, n-k)/(2*k + 1) * (2*n + 1)^k, k = 0..n), n = 0..10);
  • Mathematica
    Table[Binomial[n + k, n - k] / (2*k + 1) * (2*n + 1)^k, {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 17 2024 *)

Formula

n-th row polynomial R(n, x) = Sum_{k = 0..n} T(n, k)*x^k = sqrt( 2* Sum_{k = 0..2*n} (2*n + 1)^(k-1) *binomial(2*n+k+2, 2*k+2)/(2*n + k + 2) * x^k ).
R(n, x)^2 = 2/(x*(2*n + 1)^3) * ( ChebyshevT(2*n+1, 1 + (2*n+1)*x/2) - 1 ).
R(n, 2) = A370260(n).

A136388 Triangle read by rows of coefficients of Chebyshev-like polynomials P_{n,2}(x) with 0 omitted (exponents in increasing order).

Original entry on oeis.org

1, -2, 2, 1, -5, 4, 4, -12, 8, -1, 13, -28, 16, -6, 38, -64, 32, 1, -25, 104, -144, 64, 8, -88, 272, -320, 128, -1, 41, -280, 688, -704, 256, -10, 170, -832, 1696, -1536, 512, 1, -61, 620, -2352, 4096, -3328, 1024, 12, -292, 2072, -6400, 9728, -7168, 2048
Offset: 2

Views

Author

Milan Janjic, Mar 30 2008, entry revised Apr 05 2008

Keywords

Comments

If U_n(x), T_n(x) are Chebyshev's polynomials then U_n(x)=P_{n,0}(x), T_n(x)=P_{n,1}(x).
Let n>=2 and k be of the same parity. Consider a set X consisting of (n+k)/2-2 main blocks of the size 2 and an additional block of the size 2, then (-1)^((n-k)/2)a(n,k) is the number of n-2-subsets of X intersecting each main block.

Examples

			Rows are (1),(-2,2),(1,-5,4),(4,-12,8),(-1,13,-28,16),...
since P_{2,2}=x^2, P_{3,2}=-2x+2x^3, P_{4,2}=1-5x^2+4x^4,...
		

Crossrefs

Programs

  • Maple
    if modp(n-k, 2)=0 then a[n,k]:=(-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-2, i)*binomial(n+k-2-2*i, n-2), i=0..(n+k)/2-2); end if;
  • Mathematica
    Rest@ Flatten@ Table[If[SameQ @@ Mod[{n, k}, 2], (-1)^((n - k)/2)*Sum[(-1)^i*Binomial[(n + k)/2 - 2, i]*Binomial[n + k - 2 - 2 i, n - 2], {i, 0, (n + k)/2 - 2}], 0], {n, 2, 13}, {k, Boole@ OddQ@ n, n, 2}] (* Michael De Vlieger, Jul 02 2019 *)

Formula

If n>=2 and k are of the same parity then a(n,k)= (-1)^((n-k)/2)*sum((-1)^i*binomial((n+k)/2-2, i)*binomial(n+k-2-2*i, n-2), i=0..(n+k)/2-2) and a(n,k)=0 if n and k are of different parity.
Previous Showing 11-20 of 25 results. Next