A052684
Expansion of e.g.f. 1/(1-2*x^2-x^3).
Original entry on oeis.org
1, 0, 4, 6, 96, 480, 6480, 60480, 887040, 11975040, 203212800, 3512678400, 69455232000, 1444668825600, 32953394073600, 796373690112000, 20671716409344000, 567677135241216000, 16550136029306880000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-2*x^2-x^3) ))); // G. C. Greubel, Jun 03 2022
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Z,Prod(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[1/(1-2x^2-x^3),{x,0,nn}], x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 22 2012 *)
Table[n!*(Fibonacci[n]+(-1)^n), {n,0,40}] (* G. C. Greubel, Jun 03 2022 *)
-
[factorial(n)*(fibonacci(n) +(-1)^n) for n in (0..40)] # G. C. Greubel, Jun 03 2022
A124377
Riordan array (1/(1-x-x^2),x/(1+x)).
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, 2, -1, 1, 5, 1, 3, -2, 1, 8, 4, -2, 5, -3, 1, 13, 4, 6, -7, 8, -4, 1, 21, 9, -2, 13, -15, 12, -5, 1, 34, 12, 11, -15, 28, -27, 17, -6, 1, 55, 22, 1, 26, -43, 55, -44, 23, -7, 1, 89, 33, 21
Offset: 0
Triangle begins
1,
1, 1,
2, 0, 1,
3, 2, -1, 1,
5, 1, 3, -2, 1,
8, 4, -2, 5, -3, 1,
13, 4, 6, -7, 8, -4, 1,
21, 9, -2, 13, -15, 12, -5, 1
A208153
Convolution triangle based on A006053.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 4, 7, 3, 1, 9, 14, 12, 4, 1, 14, 35, 31, 18, 5, 1, 28, 70, 87, 56, 25, 6, 1, 47, 154, 207, 175, 90, 33, 7, 1, 89, 306, 504, 476, 310, 134, 42, 8, 1, 155, 633, 1137, 1274, 941, 504, 189, 52, 9, 1
Offset: 0
Triangle begins:
1
1, 1
3, 2, 1
4, 7, 3, 1
9, 14, 12, 4, 1
14, 35, 31, 18, 5, 1
Triangle (0, 1, 2, -5/2, 1/10, 2/5, 0, 0,...) DELTA (1, 0, 0, 0,...) begins:
1
0, 1
0, 1, 1
0, 3, 2, 1
0, 4, 7, 3, 1
0, 9, 14, 12, 4, 1
0, 14, 35, 31, 18, 5, 1
-
nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[1/(1 - x - 2*x^2 + x^3 - y*x), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017 *)
A215038
Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.
Original entry on oeis.org
0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
Offset: 0
a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
A230449
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A052952(n), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 5, 4, 1, 4, 8, 9, 8, 1, 5, 12, 17, 17, 12, 1, 6, 17, 29, 34, 29, 21, 1, 7, 23, 46, 63, 63, 50, 33, 1, 8, 30, 69, 109, 126, 113, 83, 55, 1, 9, 38, 99, 178, 235, 239, 196, 138, 88, 1, 10, 47, 137, 277, 413, 474, 435, 334, 226, 144
Offset: 0
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 1
2| 1, 2, 3
3| 1, 3, 5, 4
4| 1, 4, 8, 9, 8
5| 1, 5, 12, 17, 17, 12
6| 1, 6, 17, 29, 34, 29, 21
7| 1, 7, 23, 46, 63, 63, 50, 33
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 1, 3, 4, 8, 12, 21, 33
1| 1, 2, 5, 9, 17, 29, 50, 83
2| 1, 3, 8, 17, 34, 63, 113, 196
3| 1, 4, 12, 29, 63, 126, 239, 435
4| 1, 5, 17, 46, 109, 235, 474, 909
5| 1, 6, 23, 69, 178, 413, 887, 1796
6| 1, 7, 30, 99, 277, 690, 1577, 3373
7| 1, 8, 38, 137, 414, 1104, 2681, 6054
-
T:= proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2) - (1-(-1)^n)/2) else procname(n-1,k-1)+procname(n-1,k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k): add(A035317(k-p+n-k, k-2*p), p=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A320508
T(n,k) = binomial(n - k - 1, k), 0 <= k < n, and T(n,n) = (-1)^n, triangle read by rows.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, 1, 1, 0, -1, 1, 2, 0, 0, 1, 1, 3, 1, 0, 0, -1, 1, 4, 3, 0, 0, 0, 1, 1, 5, 6, 1, 0, 0, 0, -1, 1, 6, 10, 4, 0, 0, 0, 0, 1, 1, 7, 15, 10, 1, 0, 0, 0, 0, -1, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1, 1, 10, 36
Offset: 0
Triangle begins:
1;
1, -1;
1, 0, 1;
1, 1, 0, -1;
1, 2, 0, 0, 1;
1, 3, 1, 0, 0, -1;
1, 4, 3, 0, 0, 0, 1;
1, 5, 6, 1, 0, 0, 0, -1;
1, 6, 10, 4, 0, 0, 0, 0, 1;
1, 7, 15, 10, 1, 0, 0, 0, 0, -1;
1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1;
1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1;
...
-
Table[Table[Binomial[n - k - 1, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
create_list(binomial(n - k - 1, k), n, 0, 12, k, 0, n);
A099096
Riordan array (1,2-x).
Original entry on oeis.org
1, 0, 2, 0, -1, 4, 0, 0, -4, 8, 0, 0, 1, -12, 16, 0, 0, 0, 6, -32, 32, 0, 0, 0, -1, 24, -80, 64, 0, 0, 0, 0, -8, 80, -192, 128, 0, 0, 0, 0, 1, -40, 240, -448, 256, 0, 0, 0, 0, 0, 10, -160, 672, -1024, 512, 0, 0, 0, 0, 0, -1, 60, -560, 1792, -2304, 1024, 0, 0, 0, 0, 0
Offset: 0
Rows begin
1;
0, 2;
0, -1, 4;
0, 0, -4, 8;
0, 0, 1, -12, 16;
...
-
/* Matrix power T^m formula: [T^m](n,k) = */ {T(n,k,m=1)=polcoeff((1 - (1-x +x*O(x^n))^(2^m) )^k,n)} \\ Paul D. Hanna, Nov 15 2007
A099494
A Chebyshev transform of Fibonacci(n)+(-1)^n.
Original entry on oeis.org
1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1, 0, -1, 0, 1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1, 0, -1, 0, 1, 0, 1, 1, -1, 0, 0, -2, 0, 1, -1, 1, 2, -1, 0, 1, -2, -1, 1, -1, 0, 2, 0, 0, 1, -1, -1
Offset: 0
Comments