cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 83 results. Next

A283826 Irregular triangle read by rows: T(n,k) = number of trees on n nodes with radius k, n>=1, 1 <= k <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 3, 1, 11, 10, 1, 1, 17, 25, 4, 1, 25, 61, 18, 1, 1, 36, 132, 61, 5, 1, 50, 277, 194, 28, 1, 1, 70, 554, 553, 117, 6, 1, 94, 1077, 1495, 451, 40, 1, 1, 127, 2034, 3823, 1552, 197, 7, 1, 168, 3770, 9427, 5020, 879, 54, 1, 1, 222, 6853, 22466, 15289, 3485, 305, 8, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2017

Keywords

Comments

The radius of a tree is the maximal distance of a node from the center.

Examples

			Triangle begins:
  0,
  1,
  1,
  1,  1,
  1,  2,
  1,  4,   1,
  1,  7,   3,
  1, 11,  10,   1,
  1, 17,  25,   4,
  1, 25,  61,  18,  1,
  1, 36, 132,  61,  5,
  1, 50, 277, 194, 28, 1,
  ...
		

Crossrefs

Cf. A283827.
See also A000676, A000677, A027416, A102911, A004250 (column 2?), A000055 (row sums).

Formula

T(n,k) = A034853(n,2k-1) + A034853(n,2k). - R. J. Mathar, Apr 03 2017

A371830 Irregular triangle read by rows: T(n,k) is the number of unlabeled n-vertex hypergraphs (or set systems) with k hyperedges (none of which is empty), 0 <= k <= 2^n-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 10, 10, 6, 3, 1, 1, 4, 13, 39, 97, 187, 290, 365, 365, 290, 187, 97, 39, 13, 4, 1, 1, 5, 23, 111, 514, 2160, 8035, 26195, 74382, 183710, 395498, 744592, 1229846, 1787148, 2289929, 2591163, 2591163, 2289929, 1787148, 1229846, 744592, 395498, 183710, 74382, 26195, 8035, 2160, 514, 111, 23, 5, 1
Offset: 0

Views

Author

Pontus von Brömssen, Apr 07 2024

Keywords

Examples

			Triangle begins:
  n\k| 0  1  2  3  4   5   6   7   8   9  10 11 12 13 14 15
  ---+-----------------------------------------------------
  0  | 1
  1  | 1  1
  2  | 1  2  2  1
  3  | 1  3  6 10 10   6   3   1
  4  | 1  4 13 39 97 187 290 365 365 290 187 97 39 13  4  1
		

Crossrefs

Cf. A000612 (row sums), A008406, A052265 (empty hyperedge allowed).

Programs

  • SageMath
    def A371830(n,k):
        return sum(1 for G in hypergraphs.nauty(k,n,set_min_size=1))

Formula

T(n,k) = Sum_{j=0..k} (-1)^(k-j)*A052265(n,j).

A001431 Number of graphs with n nodes and n-3 edges.

Original entry on oeis.org

0, 0, 1, 1, 2, 5, 10, 24, 63, 165, 467, 1405, 4435, 14775, 51814, 190443, 732472, 2939612, 12277230, 53233295, 239083372, 1109921554, 5316143531, 26225625392, 133050795412, 693227353094, 3704785464812, 20285853687809, 113690627637475, 651559904414667
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008406.

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n-3], {n, 3, 27}] (* Robert G. Wilson v *)

Extensions

More terms from Vladeta Jovovic, Jan 12 2000

A001432 Number of graphs with n nodes and n-4 edges.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 11, 25, 66, 172, 485, 1446, 4541, 15036, 52496, 192218, 737248, 2952621, 12313532, 53336122, 239380403, 1110793092, 5318743428, 26233496486, 133074975399
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008406.

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n-4], {n, 4, 26}] (* Robert G. Wilson v *)

Extensions

More terms from Vladeta Jovovic, Jan 03 2000

A091478 Table of graphs with n (>=0) nodes and k (>=0) edges. Each type of object labeled from its own label set.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 6, 6, 1, 6, 30, 120, 360, 720, 720, 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800, 1, 15, 210, 2730, 32760, 360360, 3603600, 32432400, 259459200, 1816214400, 10897286400, 54486432000, 217945728000, 653837184000, 1307674368000, 1307674368000
Offset: 0

Views

Author

Christian G. Bower, Jan 13 2004

Keywords

Examples

			  1;
  1;
  1, 1;
  1, 3,  6,   6;
  1, 6, 30, 120, 360, 720, 720;
  ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.44).

Crossrefs

Row sums: A091479.
Row lengths: A000124(n-1) for n>=1.
Columns 0-2: A000012, A000217(n-1), A033487(n-2).
a(n,A000217(n-1)) = A052295(n-1).

Formula

a(n, k) = k!*binomial(binomial(n, 2), k).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Feb 14 2023

A123548 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs having 2n nodes and k edges, which are invariant when the two color classes are interchanged. Here n >= 0, 0 <= k <= n^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 4, 5, 7, 8, 9, 8, 7, 5, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 14, 22, 29, 33, 37, 43, 43, 37, 33, 29, 22, 14, 9, 6, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 10, 16, 29, 46, 69, 99, 141, 183, 230, 277, 319, 342, 352, 342, 319, 277, 230, 183, 141, 99, 69, 46, 29, 16, 10, 6, 4, 2, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Examples

			Triangle begins:
n = 0
k = 0 : 1
************************ total ( 2n = 0) = 1
n = 1
k = 0 : 1
k = 1 : 1
************************ total ( 2n = 2) = 2
n = 2
k = 0 : 1
k = 1 : 1
k = 2 : 1
k = 3 : 1
k = 4 : 1
************************ total ( 2n = 4) = 5
n = 3
k = 0 : 1
k = 1 : 1
k = 2 : 1
k = 3 : 2
k = 4 : 3
k = 5 : 3
k = 6 : 2
k = 7 : 1
k = 8 : 1
k = 9 : 1
************************ total ( 2n = 6) = 16
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A122082.
Cf. A008406.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(2*v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(2*c)^(c\2)*if(c%2, t(c), 1))}
    Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s/n!)}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Mar 08 2020

A259976 Irregular triangle T(n, k) read by rows (n >= 0, 0 <= k <= A011848(n)): T(n, k) is the number of occurrences of the principal character in the restriction of xi_k to S_(n)^(2).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 4, 6, 6, 3, 1, 0, 1, 3, 5, 11, 20, 24, 32, 34, 17, 1, 0, 1, 3, 6, 13, 32, 59, 106, 181, 261, 317, 332, 245, 89, 1, 0, 1, 3, 6, 14, 38, 85, 197, 426, 866, 1615, 2743, 4125, 5495, 6318, 6054, 4416, 1637
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2015

Keywords

Comments

See Merris and Watkins (1983) for precise definition.

Examples

			The triangle begins:
[0] 1
[1] 1
[2] 1
[3] 1,0,
[4] 1,0,1,1,
[5] 1,0,1,2,2,0,
[6] 1,0,1,3,4,6,6,3,
[7] 1,0,1,3,5,11,20,24,32,34,17
[8] 1,0,1,3,6,13,32,59,106,181,261,317,332,245,89
[9] 1,0,1,3,6,14,38,85,197,426,866,1615,2743,4125,5495,6318,6054,4416,1637
...
		

Crossrefs

Cf. A005368, A000088, A011848. Length of row n is A039823(n-1).
Row n is apparently formed by the first differences of the first half of row n of A008406.

Programs

  • Sage
    from sage.groups.perm_gps.permgroup_element import make_permgroup_element
    for p in range(8):
        m = p*(p-1)//2
        Sm = SymmetricGroup(m)
        denom = factorial(p)
        elements = []
        for perm in SymmetricGroup(p):
            t = perm.tuple()
            eperm = []
            for v2 in range(p):
                for v1 in range(v2):
                    w1, w2 = sorted([t[v1], t[v2]])
                    eperm.append((w2-1)*(w2-2)//2+w1)
            elements.append(make_permgroup_element(Sm, eperm))
        for q in range(m//2+1):
            char = SymmetricGroupRepresentation([m-q, q]).to_character()
            numer = sum(char(e) for e in elements)
            print((p, q), numer//denom)
    # Andrey Zabolotskiy, Aug 28 2018

Formula

From Andrey Zabolotskiy, Aug 28 2018: (Start)
Sum_{ k=0..A011848(n) } T(n,k) * (n*(n-1)/2 - 2*k + 1) = A000088(n).
T(n,k) = A005368(k) for n >= 2*k. (End)

Extensions

Name edited, terms T(7, 9)-T(7, 10) and rows 0-2, 8, 9 added by Andrey Zabolotskiy, Sep 06 2018

A171412 Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = (x^3 + x^2 + x + 1)^floor(n/2) if n is odd, and p(x,n) = (x + 1)*p(x,n-1) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 9, 16, 22, 24, 22, 16, 9, 4, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 5, 14, 30, 51, 71, 84, 84, 71, 51, 30, 14, 5, 1, 1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1
Offset: 1

Views

Author

Roger L. Bagula, Dec 08 2009

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1,  1;
  1, 2,  2,  2,   1;
  1, 2,  3,  4,   3,   2,   1;
  1, 3,  5,  7,   7,   5,   3,   1;
  1, 3,  6, 10,  12,  12,  10,   6,   3,   1;
  1, 4,  9, 16,  22,  24,  22,  16,   9,   4,   1;
  1, 4, 10, 20,  31,  40,  44,  40,  31,  20,  10,   4,   1;
  1, 5, 14, 30,  51,  71,  84,  84,  71,  51,  30,  14,   5,  1;
  1, 5, 15, 35,  65, 101, 135, 155, 155, 135, 101,  65,  35, 15,  5, 1;
  1, 6, 20, 50, 100, 166, 236, 290, 310, 290, 236, 166, 100, 50, 20, 6, 1;
  ...
		

Crossrefs

Row sums: A000079.

Programs

  • Mathematica
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^3 + x^2 + x + 1)^Floor[n/2]]
    Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]
  • Maxima
    p(x, n) := if mod(n, 2) = 0 then (x + 1)*p(x, n - 1) else (x^3 + x^2 + x + 1)^floor(n/2)$
    T(n, k) := ratcoef(p(x, n), x, k)$
    create_list(T(n, k), n, 1, 12, k, 0, hipow(fullratsimp(p(x, n)), x));
    /* Franck Maminirina Ramaharo, Jan 13 2019 */

Extensions

Edited by Franck Maminirina Ramaharo, Jan 13 2019

A171414 Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = ((x^n - 1)/(x - 1))^floor(n/2) if n is odd, and p(x,n) = ((x^n - 1)/(x - 1))*p(x,n-1) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 117, 152, 186, 216, 239, 252, 252, 239, 216, 186, 152, 117, 84, 56, 35, 20, 10, 4, 1
Offset: 1

Views

Author

Roger L. Bagula, Dec 08 2009

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1;
  1, 2, 3,  3,  2,  1;
  1, 2, 3,  4,  5,  4,  3,  2,  1;
  1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10,  6,  3,  1;
  1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, Sum[x^i, {i, 0, n - 1}]*p[x, n - 1], (Sum[x^i, {i, 0, n - 1}])^Floor[n/2]]
    Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]
  • Maxima
    p(x, n) := if mod(n, 2) = 0 then ((x^n - 1)/(x - 1))*p(x, n - 1) else ((x^n - 1)/(x - 1))^floor(n/2)$
    T(n, k) := ratcoef(p(x, n), x, k)$
    create_list(T(n, k), n, 1, 10, k, 0, hipow(fullratsimp(p(x, n)), x));
    /* Franck Maminirina Ramaharo, Jan 13 2019 */

Extensions

Edited by Franck Maminirina Ramaharo, Jan 13 2019

A199840 Triangle read by rows: T(n,k) is the number of 2-multigraphs on n nodes having exactly k edges, with n >= 1 and 0 <= k <= n*(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 5, 8, 9, 12, 9, 8, 5, 3, 1, 1, 1, 1, 3, 6, 14, 24, 43, 62, 87, 100, 110, 100, 87, 62, 43, 24, 14, 6, 3, 1, 1, 1, 1, 3, 7, 18, 40, 91, 180, 352, 616, 1006, 1483, 2036, 2522, 2891, 3012, 2891, 2522, 2036, 1483, 1006, 616, 352, 180, 91, 40, 18, 7, 3, 1, 1
Offset: 1

Views

Author

Geoffrey Critzer, Nov 11 2011

Keywords

Comments

Here a 2-multigraph is an unlabeled graph with at most 2 edges connecting any vertex pair with no self loops allowed.

Examples

			Triangle begins:
  1;
  1, 1, 1;
  1, 1, 2, 2, 2, 1, 1;
  1, 1, 3, 5, 8, 9, 12, 9, 8, 5, 3, 1, 1;
  ...
		

Crossrefs

Row sums are A004102.
Cf. A008406.

Programs

  • Mathematica
    Table[CoefficientList[Expand[PairGroupIndex[SymmetricGroup[n],s] /. Table[s[i]->1+x^i+x^(2i), {i,1,Binomial[n,2]}]], x], {n, 1, 6}]
    (* Second program: *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    row[n_] := Module[{s=0}, Do[s += permcount[p]*edges[p, 1 + x^# + x^(2#)&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
    Array[row, 6] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+(x^2)^i)); Vecrev(s/n!)}
    { for(n=1, 6, print(Row(n))) } \\ Andrew Howroyd, Nov 07 2019

Extensions

Terms a(46) and beyond from Andrew Howroyd, Nov 07 2019
Previous Showing 61-70 of 83 results. Next