A283826
Irregular triangle read by rows: T(n,k) = number of trees on n nodes with radius k, n>=1, 1 <= k <= floor(n/2).
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 3, 1, 11, 10, 1, 1, 17, 25, 4, 1, 25, 61, 18, 1, 1, 36, 132, 61, 5, 1, 50, 277, 194, 28, 1, 1, 70, 554, 553, 117, 6, 1, 94, 1077, 1495, 451, 40, 1, 1, 127, 2034, 3823, 1552, 197, 7, 1, 168, 3770, 9427, 5020, 879, 54, 1, 1, 222, 6853, 22466, 15289, 3485, 305, 8, 1
Offset: 1
Triangle begins:
0,
1,
1,
1, 1,
1, 2,
1, 4, 1,
1, 7, 3,
1, 11, 10, 1,
1, 17, 25, 4,
1, 25, 61, 18, 1,
1, 36, 132, 61, 5,
1, 50, 277, 194, 28, 1,
...
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 8 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
A371830
Irregular triangle read by rows: T(n,k) is the number of unlabeled n-vertex hypergraphs (or set systems) with k hyperedges (none of which is empty), 0 <= k <= 2^n-1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 10, 10, 6, 3, 1, 1, 4, 13, 39, 97, 187, 290, 365, 365, 290, 187, 97, 39, 13, 4, 1, 1, 5, 23, 111, 514, 2160, 8035, 26195, 74382, 183710, 395498, 744592, 1229846, 1787148, 2289929, 2591163, 2591163, 2289929, 1787148, 1229846, 744592, 395498, 183710, 74382, 26195, 8035, 2160, 514, 111, 23, 5, 1
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---+-----------------------------------------------------
0 | 1
1 | 1 1
2 | 1 2 2 1
3 | 1 3 6 10 10 6 3 1
4 | 1 4 13 39 97 187 290 365 365 290 187 97 39 13 4 1
A001431
Number of graphs with n nodes and n-3 edges.
Original entry on oeis.org
0, 0, 1, 1, 2, 5, 10, 24, 63, 165, 467, 1405, 4435, 14775, 51814, 190443, 732472, 2939612, 12277230, 53233295, 239083372, 1109921554, 5316143531, 26225625392, 133050795412, 693227353094, 3704785464812, 20285853687809, 113690627637475, 651559904414667
Offset: 1
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n-3], {n, 3, 27}] (* Robert G. Wilson v *)
A001432
Number of graphs with n nodes and n-4 edges.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 5, 11, 25, 66, 172, 485, 1446, 4541, 15036, 52496, 192218, 737248, 2952621, 12313532, 53336122, 239380403, 1110793092, 5318743428, 26233496486, 133074975399
Offset: 1
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n-4], {n, 4, 26}] (* Robert G. Wilson v *)
A091478
Table of graphs with n (>=0) nodes and k (>=0) edges. Each type of object labeled from its own label set.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 6, 6, 1, 6, 30, 120, 360, 720, 720, 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800, 1, 15, 210, 2730, 32760, 360360, 3603600, 32432400, 259459200, 1816214400, 10897286400, 54486432000, 217945728000, 653837184000, 1307674368000, 1307674368000
Offset: 0
1;
1;
1, 1;
1, 3, 6, 6;
1, 6, 30, 120, 360, 720, 720;
...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.44).
Row lengths:
A000124(n-1) for n>=1.
A123548
Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs having 2n nodes and k edges, which are invariant when the two color classes are interchanged. Here n >= 0, 0 <= k <= n^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 4, 5, 7, 8, 9, 8, 7, 5, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 14, 22, 29, 33, 37, 43, 43, 37, 33, 29, 22, 14, 9, 6, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 10, 16, 29, 46, 69, 99, 141, 183, 230, 277, 319, 342, 352, 342, 319, 277, 230, 183, 141, 99, 69, 46, 29, 16, 10, 6, 4, 2, 1, 1, 1
Offset: 0
Triangle begins:
n = 0
k = 0 : 1
************************ total ( 2n = 0) = 1
n = 1
k = 0 : 1
k = 1 : 1
************************ total ( 2n = 2) = 2
n = 2
k = 0 : 1
k = 1 : 1
k = 2 : 1
k = 3 : 1
k = 4 : 1
************************ total ( 2n = 4) = 5
n = 3
k = 0 : 1
k = 1 : 1
k = 2 : 1
k = 3 : 2
k = 4 : 3
k = 5 : 3
k = 6 : 2
k = 7 : 1
k = 8 : 1
k = 9 : 1
************************ total ( 2n = 6) = 16
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(2*v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(2*c)^(c\2)*if(c%2, t(c), 1))}
Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s/n!)}
{ for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Mar 08 2020
A259976
Irregular triangle T(n, k) read by rows (n >= 0, 0 <= k <= A011848(n)): T(n, k) is the number of occurrences of the principal character in the restriction of xi_k to S_(n)^(2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 4, 6, 6, 3, 1, 0, 1, 3, 5, 11, 20, 24, 32, 34, 17, 1, 0, 1, 3, 6, 13, 32, 59, 106, 181, 261, 317, 332, 245, 89, 1, 0, 1, 3, 6, 14, 38, 85, 197, 426, 866, 1615, 2743, 4125, 5495, 6318, 6054, 4416, 1637
Offset: 0
The triangle begins:
[0] 1
[1] 1
[2] 1
[3] 1,0,
[4] 1,0,1,1,
[5] 1,0,1,2,2,0,
[6] 1,0,1,3,4,6,6,3,
[7] 1,0,1,3,5,11,20,24,32,34,17
[8] 1,0,1,3,6,13,32,59,106,181,261,317,332,245,89
[9] 1,0,1,3,6,14,38,85,197,426,866,1615,2743,4125,5495,6318,6054,4416,1637
...
- Russell Merris and William Watkins, Tensors and graphs, SIAM J. Algebraic Discrete Methods 4 (1983), no. 4, 534-547.
- Andrey Zabolotskiy, a259976 (implementation in Rust).
Row n is apparently formed by the first differences of the first half of row n of
A008406.
-
from sage.groups.perm_gps.permgroup_element import make_permgroup_element
for p in range(8):
m = p*(p-1)//2
Sm = SymmetricGroup(m)
denom = factorial(p)
elements = []
for perm in SymmetricGroup(p):
t = perm.tuple()
eperm = []
for v2 in range(p):
for v1 in range(v2):
w1, w2 = sorted([t[v1], t[v2]])
eperm.append((w2-1)*(w2-2)//2+w1)
elements.append(make_permgroup_element(Sm, eperm))
for q in range(m//2+1):
char = SymmetricGroupRepresentation([m-q, q]).to_character()
numer = sum(char(e) for e in elements)
print((p, q), numer//denom)
# Andrey Zabolotskiy, Aug 28 2018
Name edited, terms T(7, 9)-T(7, 10) and rows 0-2, 8, 9 added by
Andrey Zabolotskiy, Sep 06 2018
A171412
Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = (x^3 + x^2 + x + 1)^floor(n/2) if n is odd, and p(x,n) = (x + 1)*p(x,n-1) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 9, 16, 22, 24, 22, 16, 9, 4, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 5, 14, 30, 51, 71, 84, 84, 71, 51, 30, 14, 5, 1, 1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 2, 3, 4, 3, 2, 1;
1, 3, 5, 7, 7, 5, 3, 1;
1, 3, 6, 10, 12, 12, 10, 6, 3, 1;
1, 4, 9, 16, 22, 24, 22, 16, 9, 4, 1;
1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1;
1, 5, 14, 30, 51, 71, 84, 84, 71, 51, 30, 14, 5, 1;
1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1;
1, 6, 20, 50, 100, 166, 236, 290, 310, 290, 236, 166, 100, 50, 20, 6, 1;
...
-
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^3 + x^2 + x + 1)^Floor[n/2]]
Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]
-
p(x, n) := if mod(n, 2) = 0 then (x + 1)*p(x, n - 1) else (x^3 + x^2 + x + 1)^floor(n/2)$
T(n, k) := ratcoef(p(x, n), x, k)$
create_list(T(n, k), n, 1, 12, k, 0, hipow(fullratsimp(p(x, n)), x));
/* Franck Maminirina Ramaharo, Jan 13 2019 */
A171414
Triangle read by rows (n >= 1): T(n,k) = [x^k] p(x,n), where p(x,n) = ((x^n - 1)/(x - 1))^floor(n/2) if n is odd, and p(x,n) = ((x^n - 1)/(x - 1))*p(x,n-1) otherwise.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 117, 152, 186, 216, 239, 252, 252, 239, 216, 186, 152, 117, 84, 56, 35, 20, 10, 4, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 3, 3, 2, 1;
1, 2, 3, 4, 5, 4, 3, 2, 1;
1, 3, 6, 10, 15, 19, 21, 21, 19, 15, 10, 6, 3, 1;
1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1;
...
-
p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, Sum[x^i, {i, 0, n - 1}]*p[x, n - 1], (Sum[x^i, {i, 0, n - 1}])^Floor[n/2]]
Flatten[Table[CoefficientList[p[x, n], x], {n, 1, 12}]]
-
p(x, n) := if mod(n, 2) = 0 then ((x^n - 1)/(x - 1))*p(x, n - 1) else ((x^n - 1)/(x - 1))^floor(n/2)$
T(n, k) := ratcoef(p(x, n), x, k)$
create_list(T(n, k), n, 1, 10, k, 0, hipow(fullratsimp(p(x, n)), x));
/* Franck Maminirina Ramaharo, Jan 13 2019 */
A199840
Triangle read by rows: T(n,k) is the number of 2-multigraphs on n nodes having exactly k edges, with n >= 1 and 0 <= k <= n*(n-1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 5, 8, 9, 12, 9, 8, 5, 3, 1, 1, 1, 1, 3, 6, 14, 24, 43, 62, 87, 100, 110, 100, 87, 62, 43, 24, 14, 6, 3, 1, 1, 1, 1, 3, 7, 18, 40, 91, 180, 352, 616, 1006, 1483, 2036, 2522, 2891, 3012, 2891, 2522, 2036, 1483, 1006, 616, 352, 180, 91, 40, 18, 7, 3, 1, 1
Offset: 1
Triangle begins:
1;
1, 1, 1;
1, 1, 2, 2, 2, 1, 1;
1, 1, 3, 5, 8, 9, 12, 9, 8, 5, 3, 1, 1;
...
-
Table[CoefficientList[Expand[PairGroupIndex[SymmetricGroup[n],s] /. Table[s[i]->1+x^i+x^(2i), {i,1,Binomial[n,2]}]], x], {n, 1, 6}]
(* Second program: *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
row[n_] := Module[{s=0}, Do[s += permcount[p]*edges[p, 1 + x^# + x^(2#)&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
Array[row, 6] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+(x^2)^i)); Vecrev(s/n!)}
{ for(n=1, 6, print(Row(n))) } \\ Andrew Howroyd, Nov 07 2019
Comments