cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A014809 Expansion of Jacobi theta constant (theta_2/2)^24.

Original entry on oeis.org

1, 24, 276, 2048, 11178, 48576, 177400, 565248, 1612875, 4200352, 10131156, 22892544, 48897678, 99448320, 193740408, 363315200, 658523925, 1157743824, 1980143600, 3303168000, 5386270686, 8602175744, 13477895856, 20748607488, 31425764410, 46883528256, 68969957700
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 24 triangular numbers from A000217.

Crossrefs

Column k=24 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n+3, 2]}, (2^(11*e) * DivisorSigma[11, (n+3)/2^e] - RamanujanTau[n+3] - 2072 * If[OddQ[n], RamanujanTau[(n+3)/2], 0]) / 176896]; Array[a, 27, 0] (* Amiram Eldar, Jan 11 2025 *)

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 24th power of the g.f. for A010054.
a(n) = (A096963(n+3) - tau(n+3) - 2072*tau((n+3)/2))/176896, with Ramanujan's tau function given in A000594, and tau(n) is put to 0 if n is not integer. See the Ono et al. link, case k=24, Theorem 8. (End)
a(n) = 1/72 * Sum_{a, b, x, y > 0, a*x + b*y = n + 3, x == y == 1 mod 2 and a > b} (a*b)^3*(a^2 - b^2)^2. - Seiichi Manyama, May 05 2017
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 24*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A226255 Number of ways of writing n as the sum of 11 triangular numbers.

Original entry on oeis.org

1, 11, 55, 176, 440, 957, 1848, 3245, 5412, 8580, 12892, 18888, 26895, 36916, 50160, 66935, 86658, 111870, 142582, 177320, 221100, 272690, 329065, 399102, 480040, 566808, 672969, 793760, 920326, 1074040, 1248412, 1425974, 1640595, 1882145, 2123385, 2418339, 2743928, 3062895, 3453978, 3880855
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2013

Keywords

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

G.f. is 11th power of g.f. for A010054.
a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 11*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

A340950 Number of ways to write n as an ordered sum of 5 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 5, 0, 10, 5, 10, 20, 5, 35, 11, 40, 30, 35, 55, 30, 90, 25, 100, 60, 80, 120, 60, 140, 90, 161, 100, 165, 135, 165, 210, 140, 220, 180, 265, 170, 295, 200, 285, 330, 205, 365, 260, 395, 295, 391, 350, 355, 480, 340, 455, 490, 415, 480, 515, 445, 600, 510, 565, 550, 680, 545, 555
Offset: 5

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..67);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 67; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^5, where theta_2() is the Jacobi theta function.

A286180 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k in powers of x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 1, 0, 1, 4, 3, 2, 0, 0, 1, 5, 6, 4, 2, 0, 0, 1, 6, 10, 8, 6, 0, 1, 0, 1, 7, 15, 15, 13, 3, 3, 0, 0, 1, 8, 21, 26, 25, 12, 6, 2, 0, 0, 1, 9, 28, 42, 45, 31, 14, 9, 0, 0, 0, 1, 10, 36, 64, 77, 66, 35, 24, 3, 2, 1, 0, 1, 11, 45
Offset: 0

Views

Author

Seiichi Manyama, May 07 2017

Keywords

Comments

A(n, k) is the number of ways of writing n as the sum of k triangular numbers.

Examples

			Square array begins:
   1, 1, 1, 1,  1,  1, ...
   0, 1, 2, 3,  4,  5, ...
   0, 0, 1, 3,  6, 10, ...
   0, 1, 2, 4,  8, 15, ...
   0, 0, 2, 6, 13, 25, ...
		

Crossrefs

Main diagonal gives A106337.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^i) (1 - x^(2 i)), {i, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten (* Michael De Vlieger, May 07 2017 *)

Formula

G.f. of column k: (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k.

A282172 Expansion of (Sum_{k>=0} x^(k*(k+1)*(k+2)/6))^5.

Original entry on oeis.org

1, 5, 10, 10, 10, 21, 30, 20, 15, 30, 35, 30, 40, 40, 35, 60, 65, 25, 30, 60, 46, 50, 80, 50, 55, 120, 95, 20, 60, 90, 60, 80, 100, 40, 80, 145, 85, 30, 90, 85, 105, 155, 100, 40, 155, 170, 90, 80, 100, 90, 171, 145, 40, 60, 140, 110, 125, 130, 80, 140, 250, 170, 70, 110, 140, 160, 190, 140, 90, 180, 220, 170, 95, 70, 110, 215
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 5 tetrahedral (or triangular pyramidal) numbers (A000292).
a(n) > 0 for all n ("Pollock's Conjecture").

Examples

			a(4) = 10 because we have:
[4, 0, 0, 0, 0]
[0, 4, 0, 0, 0]
[0, 0, 4, 0, 0]
[0, 0, 0, 4, 0]
[0, 0, 0, 0, 4]
[1, 1, 1, 1, 0]
[1, 1, 1, 0, 1]
[1, 1, 0, 1, 1]
[1, 0, 1, 1, 1]
[0, 1, 1, 1, 1]
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[(Sum[x^(k (k + 1) (k + 2)/6), {k, 0, nmax}])^5, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k*(k+1)*(k+2)/6))^5.

A341022 Number of partitions of n into 5 distinct nonzero triangular numbers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 3, 0, 2, 2, 0, 1, 3, 2, 3, 2, 1, 2, 3, 2, 0, 5, 1, 3, 3, 2, 3, 2, 4, 2, 5, 2, 2, 6, 1, 4, 6, 1, 5, 6, 3, 4, 4, 4, 4, 5, 3, 5, 7, 6, 4, 8, 2, 5, 7, 3, 7, 7, 7, 5, 7, 6, 4, 12, 5, 4, 10, 3, 11, 9, 5, 9, 8, 5
Offset: 35

Views

Author

Ilya Gutkovskiy, Feb 02 2021

Keywords

Crossrefs

A227317 Expansion of psi(x)^6 * phi(-x)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -5, -10, 5, 6, 10, 40, -20, -50, 19, -52, -30, 50, -25, 74, 97, 50, -25, -140, 69, -34, -100, -50, -185, -6, 83, 310, -60, -60, 410, -128, 145, -100, -245, 250, -87, -90, -400, -410, -151, 362, 185, -50, 285, 30, 150, -240, 500, 370, -68, 222, 5, -190
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x - 5*x^2 - 10*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 40*x^7 - 20*x^8 + ...
q^3 + 2*q^7 - 5*q^11 - 10*q^15 + 5*q^19 + 6*q^23 + 10*q^27 + 40*q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^5 / QPochhammer[ q])^2, {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / eta(x + A))^2, n))}

Formula

Expansion of psi(x)^5 * f(-x)^3 = psi(x)^2 * f(-x^2)^6 in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-3/4) * (eta(q^2)^5 / eta(x))^2 in powers of q.
Euler transform of period 2 sequence [ 2, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 128 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227695.
G.f.: (Product_{k>0} (1 - x^(2*k))^5 / (1 - x^k))^2.
Convolution of A008439 and A010816.
-8 * a(n) = A215600(2*n + 1).

A280718 Expansion of (Sum_{k>=0} x^(k*(3*k-1)/2))^5.

Original entry on oeis.org

1, 5, 10, 10, 5, 6, 20, 30, 20, 5, 10, 30, 35, 30, 30, 30, 25, 30, 60, 60, 25, 5, 35, 80, 70, 51, 35, 50, 80, 90, 80, 30, 35, 60, 80, 95, 90, 90, 50, 75, 140, 140, 85, 20, 70, 120, 130, 120, 95, 115, 100, 115, 140, 155, 110, 40, 80, 200, 230, 140, 81, 120, 200, 190, 180, 120, 80, 100, 160, 240, 200, 155, 120, 140, 245, 260, 230
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 5 pentagonal numbers (A000326).
a(n) > 0 for all n >= 0.
Every number is the sum of at most 5 pentagonal numbers.
Every number is the sum of at most k k-gonal numbers (Fermat's polygonal number theorem).

Examples

			a(5) = 6 because we have:
[5, 0, 0, 0, 0]
[0, 5, 0, 0, 0]
[0, 0, 5, 0, 0]
[0, 0, 0, 5, 0]
[0, 0, 0, 0, 5]
[1, 1, 1, 1, 1]
		

Crossrefs

Programs

  • Mathematica
    nmax = 76; CoefficientList[Series[Sum[x^(k (3 k - 1)/2), {k, 0, nmax}]^5, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k*(3*k-1)/2))^5.

A296046 Expansion of Product_{k>=1} ((1 - x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 3, 0, 3, 0, 6, 1, 3, 5, 0, 13, -3, 15, -3, 14, 6, 11, 16, -4, 38, -16, 51, -24, 65, -14, 46, 21, 10, 80, -49, 154, -102, 216, -136, 242, -119, 198, 1, 68, 189, -153, 486, -425, 775, -672, 1024, -779, 1035, -628, 782, -97, 96, 816, -930, 2069, -2203, 3428, -3413, 4546, -4130, 4958
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[((1 - x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 - x^(2*k))/(1 - x^(2*k-1)))^k.
Previous Showing 11-19 of 19 results.