cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-66 of 66 results.

A246863 Expansion of phi(x) * f(x^1, x^7) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 0, 2, 2, 0, 1, 2, 2, 3, 4, 0, 0, 2, 0, 4, 2, 0, 2, 0, 0, 1, 4, 0, 2, 6, 1, 2, 0, 0, 4, 2, 0, 0, 2, 4, 2, 2, 0, 0, 0, 0, 4, 0, 1, 4, 2, 0, 4, 2, 0, 3, 2, 2, 0, 4, 0, 2, 2, 0, 4, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 0, 0, 2, 0, 3, 4, 0, 0, 2, 4, 2, 0, 0, 3, 4
Offset: 0

Views

Author

Michael Somos, Sep 05 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 2*x^5 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ...
G.f. = q^9 + 3*q^25 + 2*q^41 + 2*q^73 + 2*q^89 + q^121 + 2*q^137 + 2*q^153 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^1, x^8] QPochhammer[ -x^7, x^8] QPochhammer[ x^8], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, issquare(16 * n + 9) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 9)))};

Formula

Euler transform of period 16 sequence [ 3, -4, 2, -1, 2, -3, 3, -2, 3, -3, 2, -1, 2, -4, 3, -2, ...].
Convolution of A000122 and A214263.
a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = A246862(n).
a(n) = A113407(2*n + 1) = - A226192(2*n + 1) = A008441(4*n + 2) = A134343(4*n + 2) = A116604(8*n + 4) = A125079(8*n + 4) = A129447(8*n + 4) = A138741(8*n + 4).

A274661 Triangle read by rows: T(n, m) gives the m-th contribution T(n, m)*cos((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic cn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 1, -2, 0, 1, 2, -1, -2, 0, 1, -2, 3, 0, -2, 0, 1, -4, 2, 3, 0, -2, 0, 1, 4, -5, -1, 3, 0, -2, 0, 1, 7, -3, -6, 0, 3, 0, -2, 0, 1, -7, 9, 2, -6, 0, 3, 0, -2, 0, 1, -11, 5, 11, -1, -6, 0, 3, 0, -2, 0, 1, 11, -15, -3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, -9, -17, 2, 11, 0, -6, 0, 3, 0, -2, 0, 1, -17, 23, 6, -18, -1, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 27 2016

Keywords

Comments

If one takes the row polynomials as P(n, x) = Sum_{m=0..n} T(n, m)*x^m, n >= 0, Jacobi's elliptic function cn(u|k) in terms of the new variables v and q becomes cn(u|k) = Sum_{n>=0} P(n, x)*q^n, if in P(n, x) one replaces x^j by cos((2*j+1)*v).
v=v(u,k^2) and q=q(k^2) are computed with the help of A038534/A056982 for (2/Pi)*K and A002103 for q expanded in powers of (k/4)^2.
A test for cn(u|k) with u = 1, k = sqrt(1/2), that is v approximately 0.8472130848 and q approximately 0.04321389673, with rows n=0..10 (q powers not exceeding 10) gives 0.5959766014 to be compared with cn(1|sqrt(1/2)) approximately 0.5959765676.
For the derivation of the Fourier series formula of cn given in Abramowitz-Stegun (but there the notation sn(u|m=k^2) is used for sn(u|k)) see, e.g., Whittaker and Watson, p. 511 or Armitage and Eberlein, Exercises on p. 55.
For sn see A274659 (differently signed triangle).
The sum of entries in row n is P(n, 1) = A000007(n): 1, repeat 0. Proof: due to the g.f. identity (from the convolution)
Sum_{n >= 0} x^n/(1 + x^(2*n+1)) = (Sum_{n >= 0} x^(n*(n+1)))^2.
This is proved by bisecting the g.f. on the l.h.s. which generates c(n, 1) = (-1)^n*Sum_{2*r+1 | 2*n+1} (-1)^n. The part with n = 2*k+1 vanishes due to r_2(4*k+1)/4 = 0, where r_2(n) is the number of solutions of n as a sum of two squares. See the Grosswald reference. The part with n = 2*k becomes Sum_{k >= 0} x^(2*k) r_2(4*k+1)/4 which is the r.h.s. See A008441, the Broadhurst Oct 20 2002 comment.
For another version of this expansion of cn see A275791.
See also the W. Lang link, eqs. (43) and (44). - Wolfdieter Lang, Aug 26 2016

Examples

			The triangle T(n, m) begins:
      m  0   1  2  3  4  5  6  7  8  9 10 11
n\ 2m+1  1   3  5  7  9 11 13 15 17 19 21 23
0:       1
1:      -1   1
2:      -1   0  1
3:       1  -2  0  1
4:       2  -1 -2  0  1
5:      -2   3  0 -2  0  1
6:      -4   2  3  0 -2  0  1
7:       4  -5 -1  3  0 -2  0  1
8:       7  -3 -6  0  3  0 -2  0  1
9:      -7   9  2 -6  0  3  0 -2  0  1
10:    -11   5 11 -1 -6  0  3  0 -2  0  1
11:     11 -15 -3 11  0 -6  0  3  0 -2  0  1
...
n = 4: c(0, x)*a(4) + c(2, x)*a(2) + c(4, x)*a(0) = (+x^1)*3 +  (+x^1 + x^5)*(-2) + (+x^1 - x^3 + x^9)*1 = +2*x^1 - x^3 - 2*x^5 + 0*x^7 + x^9. Hence row n=4 is 2, -1, -2, 0, 1.
From A274660, row n = 4: c(4, x) = +x^1 - x^3 +x^9.
n = 4: P(4, x) = 2 - 1*x^1 - 2*x^2 + 1*x^4, that is the contribution of order q^4 to cn in the new variables is (2*cos(v)  - 1*cos(3*v) - 2*cos(5*v) + 1*cos(9*v))*q^4.
		

References

  • J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, Theorem 3.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Formula

T(n, m) = [x^(2*m+1)]Sum_{j=0..n} c(j, x)*a(n-j), with a(k) = A274621(k/2) if k is even and a(k) = 0 if k is odd, and c(j, x) = (-1)^j*Sum_{2*r+1 | 2*j+1} (-1)^r*x^(2*r+1) = Sum_{k=1..A099774(j+1)} sign(A274660(j, k))*x^(abs(A274660(j, k))), for j >= 0.

A144874 Coefficients of the series expansion of q^(-1/4) pi_q.

Original entry on oeis.org

1, 2, 0, 0, 1, -2, 1, 2, -3, 0, 2, 0, -1, 0, -1, 0, 4, -2, -2, 0, -1, 4, 1, -4, 0, 2, -2, 0, 2, 0, -1, 2, -1, -4, 2, 0, 2, 2, -2, 0, -2, -2, 3, 2, -3, 0, 4, -2, -2, 2, -2, 2, 0, -4, 0, 4, 3, -2, -1, -2, 0, 2, -2, -2, 2, 2, 2, 0, -4, 0, 2, -2, 1, 2, -3, -2, 4, 0, -2, 2, -2, 4, 0, -4, 2, -2, -2, 2, 2, -2, -1, 4, 1, -2, 2, -2, -4, 2, 0, 0, 2
Offset: 0

Views

Author

Eric W. Weisstein, Sep 23 2008

Keywords

Comments

From Peter Bala, Dec 12 2013: (Start)
The gamma function Gamma(x) has a q-extension or q-analog called the q-gamma function, denoted Gamma(q,x), defined by means of the product Gamma(q,x) := 1/(1-q)^(x-1)*( product{n >= 1} (1 - q^n)/(1 - q^(n+x-1)) ) when |q| < 1.
The gamma and q-gamma functions are related through the limiting process Gamma(x) = lim {q -> 1 from below} Gamma(q,x).
It is well known that the constant Pi = Gamma(1/2)^2. This suggests defining a function Pi(q), a q-analog of Pi, by putting Pi(q) = Gamma(q^2,1/2)^2 = (1 - q^2)*( product {n >= 1} (1 - q^(2*n))/(1 - q^(2*n-1)) )^2 = 1 + 2*q + q^4 - 2*q^5 + q^6 + .... This sequence gives the coefficients in the Maclaurin expansion of Pi(q).
Several classical formulas involving Pi have generalizations that involve the function Pi(q). See the Formula section below. (End)

Examples

			G.f. = 1 + 2*x + x^4 - 2*x^5 + x^6 + 2*x^7 - 3*x^8 + 2*x^10 + ...
		

References

  • R. Roy, Sources in the development of mathematics, Cambridge University Press 2011.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.

Crossrefs

Cf. A008441.

Programs

  • Mathematica
    max = 100; pi[q_] := (1 - q^2)*q^(1/4)*Product[(1 - q^(2n))^2 / (1 - q^(2n - 1))^2, {n, 1, max}]; CoefficientList[ Series[ q^(-1/4)*pi[q], {q, 0, max}], q] (* Jean-François Alcover, Feb 07 2013 *)

Formula

From Peter Bala, Dec 12 2013: (Start)
Pi(q) = q^(1/4)*pi_q.
Pi(q) = (1 - q^2)*( Sum_{n >=0} q^(n*(n+1)/2) )^2.
Some q-analogs of classical formulas
= = = = = = = = = = = = = = = = = = =
Let [n] := 1 + q + q^2 + ... + q^(n-1) denote the q-analog of the natural number n.
(a) Wallis' formula Pi/2 = (2/1)*(2/3)*(4/3)*(4/5)*(6/5)*(6/7)* ....
q_analog: Pi(q)/[2] = ([2]/[1])*([2]/[3])*([4]/[3])*([4]/[5])*([6]/[5])*([6]/[7])* ....
(b) The Euler-Sylvester continued fraction Pi/2 = 1 + 1/(1 + 2/(1 + 6/(1 + 12/(1 + ...)))) (Roy 3.47 and 3.67).
q-analog: Pi(q)/[2] = 1 + q/(1 + q*[1]*[2]/(1 + q*[2]*[3]/(1 + q*[3]*[4]/(1 + ...)))).
(c) The Madhava-Leibniz series Pi/4 = 1 - 1/3 + 1/5 - 1/7 + ....
We have two q-analogs:
Pi(q^2)/[4] = 1/[1] - q/[3] + q^2/[5] - q^3/[7] + ...,
as well as
Pi(q)/[2] = sum {n in Z} (-1)^n*q^(n*(n+1))/[2*n+1].
(d) The result Pi^2/8 = sum {n >= 0} 1/(2*n+1)^2.
q-analog: Pi(q^2)^2/[2]^2 = (1 + q)/[1]^2 + q*(1 + q^3)/[3]^2 + q^2*(1 + q^5)/[5]^2 + ....
(e) The result Pi^4/96 = sum {n >= 0} 1/(2*n+1)^4.
q-analog: q*Pi(q^2)^4/[2]^4 = f(q)/[1]^4 + f(q^3)/[3]^4 + f(q^5)/[5]^4 + ..., where f(q) = q + 4*q^2 + q^3. (End)
a(n) = A008441(n) - A008441(n-2) for n > 1. - Seiichi Manyama, Jan 05 2022

A258739 Expansion of (f(-x)^3 / f(-x^2))^6 - 64 * x * (f(-x^2)^3 / f(-x))^6 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -82, -243, -1194, 2242, 0, 3599, 2950, 0, -12242, -20950, 19926, -16807, 7294, 0, 18950, 97908, 0, -88806, 0, 59049, -183844, 51050, 0, -92142, -98002, 0, 246486, 118706, 290142, -161051, -38868, 0, 0, 75658, 0, -241900, 47614, -544806, -493658, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.
Denoted by g_6(q) in Cynk and Hulek on page 8 as a level 32 cusp form of weight 6.

Examples

			G.f. = 1 - 82*x - 243*x^2 - 1194*x^3 + 2242*x^4 + 3599*x^6 + 2950*x^7 + ...
G.f. = q - 82*q^5 - 243*q^9 - 1194*q^13 + 2242*q^17 + 3599*q^25 + 2950*q^29 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(32), 6), 165); A[1]  - 82*A[5] - 243*A[9] - 1194*A[13] + 2242*A[16];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^3 / QPochhammer[ x^2])^6 - 64 x (QPochhammer[ x^2]^3 / QPochhammer[ x])^6, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^2 + A))^6 - 64 * x * (eta(x^2 + A)^3 / eta(x + A))^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if(n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if(p==2, 0, p%4==3, if(e%2, 0, (-p)^(5*e/2)), y = -sum(i=0, p-1, kronecker(i^3-i, p)); a0=2; a1=y; for(i=2, 5, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for(i=2, e, x=y*a1 -p^5*a0; a0=a1; a1=x); a1)))};
    

Formula

Expansion of q^(-1/4) * ((eta(-q)^3 / eta(-q^2))^6 - 64 * (eta(-q^2) / eta(-q))^6) in powers of q.
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(5*e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = -(32^3) (t/i)^6 f(t) where q = exp(2 Pi i t).

A286813 Number of positive odd solutions to equation x^2 + 8*y^2 = 8*n + 9.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Crossrefs

Related to the number of positive odd solutions to equation x^2 + k*y^2 = 8*n + k + 1: A008441 (k=1), A033761 (k=2), A033762 (k=3), A053692 (k=4), A033764 (k=5), A259896 (k=6), A035162 (k=7), this sequence (k=8).

Formula

Expansion of q^(-9/8) * (eta(q^2) * eta(q^16))^2 / (eta(q) * eta(q^8)) in powers of q.
Euler Transform of -(-2*x^8-x^7-1)/(x^9+x^8+x+1) (o.g.f.). - Simon Plouffe, Jun 23 2018

A296046 Expansion of Product_{k>=1} ((1 - x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 3, 0, 3, 0, 6, 1, 3, 5, 0, 13, -3, 15, -3, 14, 6, 11, 16, -4, 38, -16, 51, -24, 65, -14, 46, 21, 10, 80, -49, 154, -102, 216, -136, 242, -119, 198, 1, 68, 189, -153, 486, -425, 775, -672, 1024, -779, 1035, -628, 782, -97, 96, 816, -930, 2069, -2203, 3428, -3413, 4546, -4130, 4958
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[((1 - x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 - x^(2*k))/(1 - x^(2*k-1)))^k.
Previous Showing 61-66 of 66 results.