cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A004897 Numbers that are the sum of at most 2 nonzero 10th powers.

Original entry on oeis.org

0, 1, 2, 1024, 1025, 2048, 59049, 59050, 60073, 118098, 1048576, 1048577, 1049600, 1107625, 2097152, 9765625, 9765626, 9766649, 9824674, 10814201, 19531250, 60466176, 60466177, 60467200, 60525225, 61514752, 70231801, 120932352
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A008454 (10th powers), A004802 (sum of 2).

Programs

  • PARI
    lista(nn) = setbinop((x,y)->x^10+y^10, [0..nn]); \\ Michel Marcus, Jul 02 2025

A016774 a(n) = (3*n)^10.

Original entry on oeis.org

0, 59049, 60466176, 3486784401, 61917364224, 576650390625, 3570467226624, 16679880978201, 63403380965376, 205891132094649, 590490000000000, 1531578985264449, 3656158440062976, 8140406085191601, 17080198121677824
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008454 (n^10).

Programs

  • Magma
    [(3*n)^10: n in [0..20]]; // Vincenzo Librandi, May 09 2011
  • Mathematica
    (3*Range[0,30])^10 (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,59049,60466176,3486784401,61917364224,576650390625,3570467226624,16679880978201,63403380965376,205891132094649,590490000000000},30](* Harvey P. Dale, Mar 04 2013 *)

Formula

a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11); a(0)=0, a(1)=59049, a(2)=60466176, a(3)=3486784401, a(4)=61917364224, a(5)=576650390625, a(6)=3570467226624, a(7)=16679880978201, a(8)=63403380965376, a(9)=205891132094649, a(10)=590490000000000. - Harvey P. Dale, Mar 04 2013

A016822 a(n) = (4n+1)^10.

Original entry on oeis.org

1, 9765625, 3486784401, 137858491849, 2015993900449, 16679880978201, 95367431640625, 420707233300201, 1531578985264449, 4808584372417849, 13422659310152401, 34050628916015625, 79792266297612001, 174887470365513049, 362033331456891249, 713342911662882601
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4n+1)^10,{n,0,100}] (* Mohammad K. Azarian, Jun 20 2016 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,9765625,3486784401,137858491849,2015993900449,16679880978201,95367431640625,420707233300201,1531578985264449,4808584372417849,13422659310152401},20] (* Harvey P. Dale, Sep 02 2025 *)

Formula

a(n) = A008454(A016813(n)). - Michel Marcus, Jun 21 2016
G.f.: (1 + 9765614*x + 3379362581*x^2 + 100040972648*x^3 + 689712304370*x^4 + 1514068354580*x^5 + 1167881384066*x^6 + 306865115624*x^7 + 22833444557*x^8 + 281825710*x^9 + 59049*x^10)/(1 - x)^11. - Ilya Gutkovskiy, Jun 21 2016

A016882 (5n+2)^10.

Original entry on oeis.org

1024, 282475249, 61917364224, 2015993900449, 26559922791424, 205891132094649, 1125899906842624, 4808584372417849, 17080198121677824, 52599132235830049, 144555105949057024, 362033331456891249, 839299365868340224, 1822837804551761449, 3743906242624487424
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A016873(n)^10 = A008454(A016873(n)). - Wesley Ivan Hurt, Jan 22 2014

A016918 a(n) = (6*n)^10.

Original entry on oeis.org

0, 60466176, 61917364224, 3570467226624, 63403380965376, 590490000000000, 3656158440062976, 17080198121677824, 64925062108545024, 210832519264920576, 604661760000000000, 1568336880910795776, 3743906242624487424
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). - Wesley Ivan Hurt, Jan 20 2024

A017170 a(n) = (9*n)^10.

Original entry on oeis.org

0, 3486784401, 3570467226624, 205891132094649, 3656158440062976, 34050628916015625, 210832519264920576, 984930291881790849, 3743906242624487424, 12157665459056928801, 34867844010000000000
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = 3486784401*A008454(n). - R. J. Mathar, Jul 07 2017

A017362 a(n) = (10*n + 7)^10.

Original entry on oeis.org

282475249, 2015993900449, 205891132094649, 4808584372417849, 52599132235830049, 362033331456891249, 1822837804551761449, 7326680472586200649, 24842341419143568849, 73742412689492826049
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A017353 (10n+7), A008454 (n^10).

Programs

A017566 a(n) = (12*n+3)^10.

Original entry on oeis.org

59049, 576650390625, 205891132094649, 8140406085191601, 119042423827613001, 984930291881790849, 5631351470947265625, 24842341419143568849, 90438207500880449001, 283942098606901565601, 792594609605189126649
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A017590 a(n) = (12*n+5)^10.

Original entry on oeis.org

9765625, 2015993900449, 420707233300201, 13422659310152401, 174887470365513049, 1346274334462890625, 7326680472586200649, 31181719929966183601, 110462212541120451001, 339456738992222314849
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Previous Showing 31-40 of 42 results. Next