cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 416 results. Next

A076380 Sum of digits in base 2 is a divisor of sum of prime divisors (A008472).

Original entry on oeis.org

2, 4, 8, 14, 15, 16, 26, 28, 32, 33, 35, 38, 39, 42, 45, 51, 52, 56, 64, 65, 66, 74, 75, 76, 81, 84, 91, 95, 98, 104, 112, 114, 119, 126, 128, 129, 130, 132, 134, 135, 146, 148, 152, 153, 154, 161, 168, 170, 175, 194, 196, 198, 206, 208, 215, 221, 222, 224, 225
Offset: 0

Views

Author

Floor van Lamoen, Oct 08 2002

Keywords

Comments

Prime divisors counted without multiplicity. - Harvey P. Dale, Jan 08 2019

Crossrefs

Programs

  • Maple
    A076380 := proc(n) local i,j,t,t1, sod, sopd; t := NULL; for i from 2 to n do t1 := i; sod := 0; while t1 <> 0 do sod := sod + (t1 mod 2); t1 := floor(t1/2); od; sopd := 0; j := 1; while ithprime(j) <= i do if i mod ithprime(j) = 0 then sopd := sopd+ithprime(j); fi; j := j+1; od; if sopd mod sod = 0 then t := t,i; fi; od; t; end;
  • Mathematica
    Select[Range[2,250],Divisible[Total[FactorInteger[#][[All,1]]],Total[ IntegerDigits[ #,2]]]&] (* Harvey P. Dale, Jan 08 2019 *)

A068935 Numbers having the sum of distinct prime factors less than the sum of exponents in prime factorization, A008472(n) < A001222(n).

Original entry on oeis.org

8, 16, 32, 64, 81, 96, 128, 144, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 640, 648, 729, 768, 864, 972, 1024, 1152, 1280, 1296, 1458, 1536, 1600, 1728, 1944, 2048, 2187, 2304, 2560, 2592, 2916, 3072, 3200, 3456, 3584, 3888, 4000, 4096, 4374, 4608
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Examples

			144 is included because 144 = 2^4 * 3^2 and 2+3 < 4+2.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{tfi=Transpose[FactorInteger[n]]},Total[First[tfi]]Harvey P. Dale, Jan 17 2011 *)
  • PARI
    isok(n) = vecsum(factor(n)[,1]) < bigomega(n); \\ Michel Marcus, Apr 25 2016

Extensions

More terms from Michel Marcus, Apr 25 2016

A068937 Numbers having the sum of distinct prime factors not less than the sum of exponents in prime factorization, A008472(n)>=A001222(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[76], Plus @@ (f = FactorInteger[#])[[;;,1]] >= Plus @@ f[[;;,2]] &] (* Amiram Eldar, Nov 14 2019 *)

Extensions

More terms from David Wasserman, Jun 17 2002

A065925 Smallest k such that sopf(n+k) = sopf(k), where sopf = A008472.

Original entry on oeis.org

5, 2, 7, 4, 114, 2, 5, 8, 13, 10, 25, 4, 5, 2, 19, 16, 85, 6, 5, 5, 209, 22, 25, 3, 493, 26, 31, 4, 20, 2, 5, 32, 7, 34, 516, 12, 33, 38, 10, 10, 99, 6, 5, 44, 57, 46, 25, 6, 5, 50, 49, 52, 52, 18, 855, 8, 61, 58, 295, 4, 261, 2, 91, 64, 602, 6, 5, 68, 21, 10, 25, 9, 7, 74, 13, 76
Offset: 1

Views

Author

Jason Earls, Nov 28 2001

Keywords

Examples

			a(6) = 2 because A008472(2) = A008472(6+2) = 2, but A008472(1) = 0 doesn't equal A008472(6+1) = 7.
		

References

  • J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 99-100. ASIN: B002ACVZ6O [From Jason Earls, Nov 26 2009]

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Total[FactorInteger[n + k][[All, 1]]] != Total[FactorInteger[k][[All, 1]]], k++]; k, {n, 76}] (* Michael De Vlieger, Jan 11 2017 *)
  • PARI
    sopf(n) = local(fac, i); fac=factor(n); sum(i=1,matsize(fac)[1],fac[i,1])
    A065925(m)={local(k,n); for(k=1,m,n=1; while(sopf(n)!=sopf(n+k), n++); print1(n,","))} \\ Klaus Brockhaus
    
  • Python
    from sympy import primefactors
    from itertools import count, dropwhile
    def sopf(n): return sum(p for p in primefactors(n))
    def a(n):
      k = 1
      while sopf(n+k) != sopf(k): k += 1
      return k
    print([a(n) for n in range(1, 77)]) # Michael S. Branicky, May 02 2021

A075653 a(n) = n + sopf(n), where sopf is the sum of the distinct prime factors of n (A008472).

Original entry on oeis.org

1, 4, 6, 6, 10, 11, 14, 10, 12, 17, 22, 17, 26, 23, 23, 18, 34, 23, 38, 27, 31, 35, 46, 29, 30, 41, 30, 37, 58, 40, 62, 34, 47, 53, 47, 41, 74, 59, 55, 47, 82, 54, 86, 57, 53, 71, 94, 53, 56, 57, 71, 67, 106, 59, 71, 65, 79, 89, 118, 70, 122, 95, 73, 66, 83, 82, 134, 87, 95
Offset: 1

Views

Author

Joseph L. Pe, Oct 11 2002

Keywords

Comments

For 1 <= k <= n, add sigma(k) if k is a prime factor of n, otherwise add 1. For example, a(6) = 11 since for k = 1,2,.. we have 1 + sigma(2) + sigma(3) + 1 + 1 + 1 = 1 + (1+2) + (1+3) + 1 + 1 + 1 = 11. - Wesley Ivan Hurt, Oct 18 2021

Examples

			6 + sum of prime factors of 6 = 6 + 2 + 3 = 11, so a(6) = 11.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Append[{1}, Table[n + Apply[Plus, Transpose[FactorInteger[n]][[1]]], {n, 2, 100}]]]
    Join[{1},Table[n+Total[FactorInteger[n][[All,1]]],{n,2,70}]] (* Harvey P. Dale, Sep 29 2016 *)
  • PARI
    a(n) = n + vecsum(factor(n)[,1]); \\ Michel Marcus, Feb 22 2017

Formula

a(n) = n + A008472(n).
a(p) = 2p for primes p. - Wesley Ivan Hurt, Oct 18 2021

A082087 a(n) is the fixed point if function A008472 (= sum of prime factors with no repetition) is iterated when started at initial value n!.

Original entry on oeis.org

2, 5, 5, 7, 7, 17, 17, 17, 17, 3, 3, 41, 41, 41, 41, 31, 31, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 5, 5, 7, 7, 7, 7, 7, 7, 197, 197, 197, 197, 2, 2, 281, 281, 281, 281, 43, 43, 43, 43, 43, 43, 7, 7, 7, 7, 7, 7, 5, 5, 5, 5, 5, 5, 5, 5, 73, 73, 73, 73, 2, 2, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 13, 13, 13, 13
Offset: 1

Views

Author

Labos Elemer, Apr 09 2003

Keywords

Examples

			n=73: iteration list=
{73!=61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000,639,74,39,16,2,2}
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sopf[x_] := Apply[Plus, ba[x]] Table[FixedPoint[sopf, w! ], {w, 2, 100}]

Formula

a(n) = A075860(A000142(n)).

A082088 a(n) is the fixed point if function A008472[=sum of prime factors with no repetition] is iterated when started at initial value prime[n]!.

Original entry on oeis.org

2, 5, 7, 17, 3, 41, 31, 5, 7, 5, 7, 197, 2, 281, 43, 7, 5, 5, 73, 2, 7, 7, 13, 5, 7, 5, 3, 7, 13, 3, 7, 7, 7, 7, 571, 7, 7, 5, 7, 7, 5, 7, 5, 7, 2, 7, 19, 3, 3, 67, 5, 2, 71, 43, 7, 71, 239, 7, 7, 7699, 2, 5, 313, 8893, 2, 3, 199, 5, 5, 2, 5, 2, 3, 7, 6361, 3, 97, 5, 19, 97, 7, 2593, 5, 5
Offset: 1

Views

Author

Labos Elemer, Apr 09 2003

Keywords

Examples

			n=100,p(100)=541,start at 541! and get iteration list=
{541!,24133} ended immediately in a(100)=24133;
n=99,p(99)-523,start at 523! and get a list of
{523!,23592,988,34,19}, a(99)=19.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sopf[x_] := Apply[Plus, ba[x]] Table[FixedPoint[sopf, Prime[w]! ], {w, 2, 100}]

Formula

a(n)=A082087[A000142(p[n])].

A226479 Numbers n such that (sopf(n)*d(n))^2 = sigma(n) where sopf(n) = sum of distinct prime factors of n (A008472) and d(n) = number of divisors of n.

Original entry on oeis.org

22446139, 26116291, 28097023, 30236557, 31090489, 31124341, 39618558, 41628195, 49941589, 51777957, 61137673, 62224039, 66960589, 71096795, 71334867, 71585139, 72304400, 82266591, 83045869, 92346023, 92837591, 105183961, 114762567, 117908994, 123563821
Offset: 1

Views

Author

Donovan Johnson, Jun 09 2013

Keywords

Comments

Suggested by N. J. A. Sloane.

Examples

			n = 22446139 = 31*67*101*107. sopf(n) = 31+67+101+107 = 306. d(n) = 16. (sopf(n)*d(n))^2 = (306*16)^2 = 23970816 = sigma(n).
		

Crossrefs

A260310 Pairs with balanced sums of prime divisors (A008472) and inverse prime divisors (A069359), ordered by larger members.

Original entry on oeis.org

3, 8, 7, 16, 11, 18, 7, 27, 17, 45, 29, 50, 41, 54, 53, 60, 31, 64, 71, 84, 29, 99, 107, 132, 61, 147, 41, 153, 131, 162, 53, 207, 157, 220, 113, 225, 179, 228, 239, 240, 131, 242, 79, 243, 73, 245, 127, 255, 127, 256, 229, 264, 223, 280, 113, 297, 199, 315, 73, 325, 317, 336, 181, 338, 43, 343, 269, 348
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2015

Keywords

Comments

Consider pairs (x,y) of numbers where sum(p|x) p + sum(q|y) q = x*sum(p|x) 1/p + y*sum(q|y) 1/q where p, q are primes and sum(p|x) p > sum(q|y) q.
Or, pairs of numbers x and y where A008472(x) + A008472(y) = A069359(x) + A069359(y) where A008472(x) > A008472(y).
A001222(a(2n -1)) = 1 and A001222(a(2n)) >= 3.
For the vast majority of the time, a(2n-1) is prime. There seems to be about 1 pair per decade.
Conjecture: a(2n) < a(2n+2) for all n>0, but there are many times (1/10.84) that a(2n) + 1 = a(2n+2).
Conjecture: if a(2n-1) is prime then a(2n) is composite and vice versa. And when a(2n-1) is composite, it is congruent to 0 (mod 6). - Robert G. Wilson v, Jul 22 2015
The first conjecture appears to be satisfied because if both x and y were prime then the sum of the A008472 were the sum of the two primes and the sum of the A069359 were two. - R. J. Mathar, Aug 03 2015

Examples

			3 and 8 is first pair of this sequence because A008472(3) + A008472(8) = 3 + 2 = 5 is equal to A069359(3) + A069359(8) = 1 + 4 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{fi = FactorInteger[n][[All, 1]]}, {Plus @@ fi, n*Plus @@ (1/fi)}] /; n > 0; k =3; lst = {}; While[ k < 400, j = 2; While[ j < k, If[ f[k][[1]] + f[j][[1]] == f[k][[2]] + f[j][[2]] && f[k][[1]] != f[k][[2]], AppendTo[lst, {j,k}]]; j++]; k++]; lst // Flatten (* Robert G. Wilson v, Jul 22 2015 *)

Extensions

Corrected and edited by Robert G. Wilson v, Jul 22 2015

A328051 Numbers m such that sigma(m)/(d(m)*sopf(m)) is an integer, where d is the number of divisors (A000005) and sopf the sum of prime factors without repetition (A008472).

Original entry on oeis.org

20, 35, 42, 54, 140, 189, 195, 207, 209, 276, 378, 464, 470, 500, 506, 510, 527, 540, 608, 660, 672, 741, 846, 864, 875, 899, 923, 945, 989, 1029, 1120, 1276, 1316, 1323, 1334, 1349, 1365, 1519, 1539, 1564, 1595, 1715, 1725, 1736, 1755, 1815, 1880, 1887, 1914, 2058
Offset: 1

Views

Author

Michel Marcus, Oct 03 2019

Keywords

Comments

This sequence is motivated by the short fate of A134382.

Examples

			For n=20, sigma(20)/(d(20)*sopf(20)) = 42/(6*7) = 1, an integer, so 20 is a term.
		

Crossrefs

Programs

  • Magma
    [k: k in [2..2100]|IsIntegral(DivisorSigma(1,k)/(#Divisors(k)*(&+PrimeDivisors(k))))]; // Marius A. Burtea, Oct 03 2019
  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((e + 1)*(p - 1)); Select[Range[2, 2100], IntegerQ[ Times @@ (f @@@ (fct = FactorInteger[#])) / Plus @@ (fct[[;; , 1]])] &] (* Amiram Eldar, Oct 03 2019 *)
  • PARI
    sopf(f) = sum(j=1, #f~, f[j, 1]); \\ A008472
    isok(m) = if (m>1, my(f=factor(m)); (sigma(f) % (numdiv(f)*sopf(f))) == 0);
    
Previous Showing 11-20 of 416 results. Next