cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A250123 Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x+1)*(x^15 +3*x^14 -4*x^11 -6*x^10 -7*x^9 -4*x^8 -7*x^7 -11*x^6 -9*x^5 -7*x^4 -4*x^3 -4*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250124 Coordination sequence of point of type 3.3.12.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 7, 10, 15, 16, 21, 29, 28, 34, 33, 40, 48, 45, 53, 51, 59, 65, 64, 72, 68, 78, 83, 83, 89, 87, 97, 100, 102, 107, 106, 114, 119, 121, 124, 125, 132, 138, 138, 143, 144, 149, 157, 156, 162, 161, 168, 176, 173, 181, 179, 187, 193, 192, 200, 196, 206, 211, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(3*x^14 -4*x^12 -4*x^11 -7*x^10 -12*x^9 -14*x^8 -21*x^7 -17*x^6 -15*x^5 -15*x^4 -10*x^3 -7*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250125 Coordination sequence of point of type 3.4.3.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 6, 11, 13, 15, 23, 23, 33, 30, 33, 42, 41, 54, 46, 54, 58, 58, 73, 64, 75, 74, 79, 89, 81, 94, 92, 100, 105, 102, 110, 109, 119, 123, 123, 126, 130, 135, 140, 142, 144, 151, 151, 161, 158, 161, 170, 169, 182, 174, 182, 186, 186, 201, 192, 203, 202, 207, 217
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x^17 +x^16 +x^15 +x^14 -2*x^13 -4*x^12 -6*x^11 -7*x^10 -11*x^9 -18*x^8 -16*x^7 -19*x^6 -14*x^5 -13*x^4 -11*x^3 -6*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250126 Coordination sequence of point of type 3.3.4.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 9, 9, 12, 19, 21, 28, 27, 31, 38, 40, 48, 44, 49, 56, 57, 67, 63, 69, 73, 75, 85, 80, 88, 92, 95, 102, 98, 106, 109, 114, 121, 118, 123, 127, 132, 138, 137, 142, 147, 149, 156, 155, 159, 166, 168, 176, 172, 177, 184, 185, 195, 191, 197, 201, 203, 213, 208
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(2*x^16 +x^14 -2*x^12 -7*x^11 -10*x^10 -10*x^9 -14*x^8 -18*x^7 -17*x^6 -18*x^5 -12*x^4 -9*x^3 -9*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A299252 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^11 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 94, 120, 178, 232, 344, 448, 664, 864, 1280, 1662, 2459, 3202, 4741, 6168, 9132, 11880, 17588, 22880, 33870, 44068, 65246, 84880, 125664, 163484, 242036, 314880, 466176, 606478, 897892, 1168124, 1729394, 2249880, 3330929, 4333418, 6415591, 8346452, 12356856, 16075828, 23800132
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + 25*x^8 + 27*x^9 + 29*x^10 + 33*x^11 + 33*x^12 + 33*x^13 + 33*x^14 + 33*x^15 + 33*x^16 + 33*x^17 + 33*x^18 + 31*x^19 + 27*x^20 + 24*x^21 + 21*x^22 + 18*x^23 + 15*x^24 + 12*x^25 + 9*x^26 + 6*x^27 + 3*x^28 - 2*x^29 - 2*x^30) / ((1 + x + x^2)*(1 + x^3 + x^6)*(1 - x^2 - x^4 - x^6 - x^8 + x^10 - x^12 - x^14 - x^16 - x^18 + x^20)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^30 - 2*x^29 + 3*x^28 + 6*x^27 + 9*x^26 + 12*x^25 + 15*x^24 + 18*x^23 + 21*x^22 + 24*x^21 + 27*x^20 + 31*x^19 + 33*x^18 + 33*x^17 + 33*x^16 + 33*x^15 + 33*x^14 + 33*x^13 + 33*x^12 + 33*x^11 + 29*x^10 + 27*x^9 + 25*x^8 + 22*x^7 + 19*x^6 + 16*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^28 + x^27 - x^24 - x^23 - 2*x^22 - 2*x^21 - 3*x^20 - 4*x^19 - 3*x^18 - 2*x^17 - 3*x^16 - 2*x^15 - 3*x^14 - 2*x^13 - 3*x^12 - 2*x^11 - 3*x^10 - 4*x^9 - 3*x^8 - 2*x^7 - 2*x^6 - x^5 - x^4 + x + 1).
a(n) = -a(n-1) + a(n-4) + a(n-5) + 2*a(n-6) + 2*a(n-7) + 3*a(n-8) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) + 3*a(n-12) + 2*a(n-13) + 3*a(n-14) + 2*a(n-15) + 3*a(n-16) + 2*a(n-17) + 3*a(n-18) + 4*a(n-19) + 3*a(n-20) + 2*a(n-21) + 2*a(n-22) + a(n-23) + a(n-24) - a(n-27) - a(n-28) for n>30. - Colin Barker, Feb 06 2018

A242941 a(n) is the number of convex uniform tessellations in dimension n.

Original entry on oeis.org

1, 11, 28, 143
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Comments

Terms for n > 4 have not been determined so far. Alfredo Andreini in 1905 gave a value of 25 for a(3), later found to be incorrect. The value 28 for a(3) was given by Norman Johnson in 1991 and later in 1994 independently by Branko Grünbaum. The value for a(4) was given by George Olshevsky in 2006.
Deza and Shtogrin (2000) agree that the value of a(3) is 28, although the authors do not provide a proof. - Felix Fröhlich, Nov 29 2014
From Felix Fröhlich, Feb 03 2019: (Start)
The 11 convex uniform tilings are all illustrated in Kepler, 1619. For an argument that exactly 11 such tilings exist, see Grünbaum, Shephard, 1977.
In dimension 2, the definition of "uniform polytope" usually seems to be equivalent to the regular polygons in order to exclude polygons that alternate two different edge-lengths. Applying this principle retroactively to dimension 1 (as done, as I assume, by Coxeter, see Coxeter, 1973, p. 129) yields a(1) = 1. (End)

References

  • H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486614809.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, Vol. 4, No. 2 (1994), 49-56.
  • N. W. Johnson, Uniform Polytopes, [To appear, cf. Weiss, Stehle, 2017].

Crossrefs

Cf. A068599.
List of coordination sequences for the 11 uniform 2D tilings: A008458(the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for the 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Extensions

Edited by N. J. A. Sloane, Feb 15 2018
Edited by Felix Fröhlich, Feb 03-10 2019

A298803 Growth series for group with presentation < S, T : S^3 = T^3 = (S*T)^4 = 1 >.

Original entry on oeis.org

1, 4, 8, 16, 30, 50, 88, 150, 260, 448, 768, 1328, 2284, 3930, 6776, 11662, 20082, 34592, 59560, 102570, 176642, 304180, 523830, 902084, 1553452, 2675184, 4606892, 7933444, 13662066, 23527220, 40515838, 69771678, 120152672, 206912968, 356321478, 613615442
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    R := RationalFunctionField(Integers());
    PSR25 := PowerSeriesRing(Integers():Precision := 25);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR25!gf);
    
  • Mathematica
    LinearRecurrence[{0,1,3,1,0,-1},{1,4,8,16,30,50,88,150},40] (* Harvey P. Dale, May 03 2019 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)) + O(x^40)) \\ Colin Barker, Feb 04 2018

Formula

G.f.: (1 + 4*x + 7*x^2 + 9*x^3 + 9*x^4 + 6*x^5 + 3*x^6 - 2*x^7) / ((1 + x + x^2)*(1 - x - x^2 - x^3 + x^4)). [Corrected by Colin Barker, Feb 04 2018]
a(n) = a(n-2) + 3*a(n-3) + a(n-4) - a(n-6) for n>7. - Colin Barker, Feb 04 2018

A298806 Growth series for group with presentation < S, T : S^3 = T^6 = (S*T)^6 = 1 >.

Original entry on oeis.org

1, 4, 10, 25, 60, 148, 358, 869, 2106, 5110, 12396, 30070, 72942, 176939, 429214, 1041172, 2525640, 6126607, 14861710, 36051016, 87451296, 212136296, 514592810, 1248281249, 3028037016, 7345306340, 17817987338, 43222250797, 104847025002, 254334247970, 616955127612, 1496588180810, 3630371290710
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 - x + x^2)*(1 + x + x^2)*(1 + x - x^2 + x^3 - x^4 + x^5 + x^6) / (1 - 3*x + 2*x^2 - x^3 - 2*x^4 + 3*x^5 - 2*x^6 - x^7 + 2*x^8 - 3*x^9 + x^10) + O(x^40)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (x^10 + x^9 + 2*x^7 - x^6 + 3*x^5 - x^4 + 2*x^3 + x + 1)/(x^10 - 3*x^9 + 2*x^8 - x^7 - 2*x^6 + 3*x^5 - 2*x^4 - x^3 + 2*x^2 - 3*x + 1).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) + 2*a(n-4) - 3*a(n-5) + 2*a(n-6) + a(n-7) - 2*a(n-8) + 3*a(n-9) - a(n-10) for n>10. - Colin Barker, Feb 06 2018

A298807 Growth series for group with presentation < S, T : S^3 = T^3 = (S*T)^6 = 1 >.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 126, 242, 472, 920, 1792, 3486, 6788, 13216, 25730, 50092, 97518, 189860, 369628, 719612, 1400980, 2727504, 5310068, 10337932, 20126468, 39183340, 76284330, 148514636, 289136638, 562907480, 1095899956, 2133559698, 4153734080, 8086723216, 15743687792, 30650697262, 59672502090
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • Mathematica
    LinearRecurrence[{0,1,2,3,5,3,2,1,0,-1},{1,4,8,16,32,64,126,242,472,920,1792,3486},40] (* Harvey P. Dale, Jul 02 2025 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 15*x^6 + 12*x^7 + 9*x^8 + 6*x^9 + 3*x^10 - 2*x^11) / ((1 + x + x^2 + x^3 + x^4)*(1 - x - x^2 - x^3 - x^4 - x^5 + x^6)) + O(x^40)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^11 + 3*x^10 + 6*x^9 + 9*x^8 + 12*x^7 + 15*x^6 + 15*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^10 - x^8 - 2*x^7 - 3*x^6 - 5*x^5 - 3*x^4 - 2*x^3 - x^2 + 1).
a(n) = a(n-2) + 2*a(n-3) + 3*a(n-4) + 5*a(n-5) + 3*a(n-6) + 2*a(n-7) + a(n-8) - a(n-10) for n>11. - Colin Barker, Feb 06 2018

A298809 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^5 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 8, 10, 6, 3, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Comments

This group is finite, so the growth series is a polynomial.
Coordination sequence for truncated dodecahedron (see Karzes link). - N. J. A. Sloane, Nov 20 2019

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
Previous Showing 21-30 of 34 results. Next