cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A117355 Riordan array (1/(1-x^2),x(1-2x^2)/(1-x^2)).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, -2, 0, 1, 1, 0, -2, 0, -3, 0, 1, 0, -2, 0, -2, 0, -4, 0, 1, 1, 0, -2, 0, -1, 0, -5, 0, 1, 0, -3, 0, 0, 0, 1, 0, -6, 0, 1, 1, 0, -1, 0, 3, 0, 4, 0, -7, 0, 1, 0, -4, 0, 3, 0, 6, 0, 8, 0, -8, 0, 1, 1, 0, 1, 0, 6, 0, 8, 0, 13, 0, -9, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 09 2006

Keywords

Comments

Row sums are A077948.
Diagonal sums are the aerated version of A009545 with g.f. 1/(1-2x^2+2x^4).

Examples

			Triangle begins
1,
0, 1,
1, 0, 1,
0, 0, 0, 1,
1, 0, -1, 0, 1,
0, -1, 0, -2, 0, 1,
1, 0, -2, 0, -3, 0, 1,
0, -2, 0, -2, 0, -4, 0, 1
		

Formula

Number triangle T(n,k)=sum{j=0..n-k, C(j-(n-k)/2-1,j)C(k,j)(1+(-1)^(n-k))/2}
T(n,k)=T(n-1,k-1)+T(n-2,k)-2*T(n-3,k-1), T(0,0)=T(1,1)=T(2,0)=T(2,2)=1, T(1,1)=T(2,1)=0, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 16 2014

A136258 a(n) = 2*a(n-1) - 2*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 8, 6, -4, -20, -32, -24, 16, 80, 128, 96, -64, -320, -512, -384, 256, 1280, 2048, 1536, -1024, -5120, -8192, -6144, 4096, 20480, 32768, 24576, -16384, -81920, -131072, -98304, 65536, 327680, 524288, 393216, -262144, -1310720, -2097152, -1572864, 1048576
Offset: 0

Views

Author

Paul Curtz, Mar 18 2008

Keywords

Comments

Sequence opposite in sign to its second differences.
Binomial transform of 1, 4, -1, -4.
A bisection gives A135520.
This sequence with offset 0 is the binomial transform of (-1)^floor(n/2)*A010685(n). - R. J. Mathar, Feb 22 2009

Crossrefs

Programs

  • Magma
    [n le 2 select 5^(n-1) else 2*(Self(n-1) - Self(n-2)): n in [1..41]]; // G. C. Greubel, Dec 02 2021
    
  • Mathematica
    LinearRecurrence[{2,-2},{1,5},50] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    vector(100,n,t=if(n<3,[t1=1,5][n],-2*t1+2*t1=t)) \\ M. F. Hasler, May 01 2008
    
  • Sage
    A136258=BinaryRecurrenceSequence(2,-2,1,5)
    [A136258(n) for n in (0..40)] # G. C. Greubel, Dec 02 2021

Formula

a(4n+1) = 5*(-4)^n, a(4n+3) = 6*(-4)^n. - M. F. Hasler, May 01 2008
G.f.: x*(1+3*x)/(1-2*x+2*x^2). - R. J. Mathar, Feb 22 2009
From Paul Curtz, Apr 27 2011: (Start)
a(n)= -4 * a(n-4).
a(n)= 3*A009545(n) + A009545(n+1). (End)
E.g.f.: exp(x)*( cos(x) + 4*sin(x) ). - G. C. Greubel, Dec 02 2021

Extensions

Edited and extended by M. F. Hasler, May 01 2008
Offset corrected Paul Curtz, Apr 27 2011

A137500 Binomial transform of b(n) = (0, 0, A007910).

Original entry on oeis.org

0, 0, 1, 5, 17, 51, 149, 439, 1309, 3927, 11797, 35423, 106301, 318903, 956645, 2869807, 8609293, 25827879, 77483893, 232452191, 697357085, 2092071255, 6276212741, 18828636175, 56485906477, 169457719431, 508373162389, 1525119495359, 4575358494269, 13726075482807
Offset: 0

Views

Author

Paul Curtz, Apr 27 2008

Keywords

Comments

b(n) is binomial transform of (0, 0, A077973).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-8,6},{0,0,1},40] (* Harvey P. Dale, Sep 27 2020 *)
  • PARI
    concat([0,0], Vec(1/((1 - 3*x)*(1 - 2*x + 2*x^2)) + O(x^40))) \\ Andrew Howroyd, Jan 03 2020

Formula

a(n) = 3*a(n-1) + A009545(n-1) for n > 0.
From Andrew Howroyd, Jan 03 2020: (Start)
a(n) = Sum_{k=0..n-2} binomial(n, k+2)*A007910(k).
a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) for n >= 3.
G.f.: x*2/((1 - 3*x)*(1 - 2*x + 2*x^2)). (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 03 2020

A138232 First differences of A138231.

Original entry on oeis.org

1, 0, 0, 1, -2, 2, -4, 2, -4, 0, 0, -4, 8, -8, 16, -8, 16, 0, 0, 16, -32, 32, -64, 32, -64, 0, 0, -64, 128, -128, 256, -128, 256, 0, 0, 256, -512, 512, -1024, 512, -1024, 0, 0, -1024, 2048, -2048, 4096, -2048, 4096, 0, 0, 4096, -8192, 8192, -16384, 8192, -16384, 0, 0, -16384, 32768
Offset: 0

Views

Author

Paul Curtz, May 05 2008

Keywords

Comments

The sequence contains 2 copies of 1 and 3 copies of the higher powers 2^j (up to sign).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-2},{1,0,0,1},70] (* Harvey P. Dale, Apr 23 2022 *)

Formula

a(n) = 2a(n-2)-2a(n-4). a(n) = -4a(n-8).
a(2n) = (-1)^(n+1)*A090132(n). a(2n+1) = A009545(n).
O.g.f.: (x-1)(x^2-x-1)/(1-2x^2+2x^4). - R. J. Mathar, Jul 08 2008

Extensions

Edited by R. J. Mathar, Jul 08 2008

A309878 The real part of b(n) where b(n) = (n + b(n-1)) * (1 + i) with b(-1)=0; i = sqrt(-1).

Original entry on oeis.org

0, 1, 2, 1, -4, -13, -22, -23, -8, 23, 54, 53, -12, -141, -270, -271, -16, 495, 1006, 1005, -20, -2069, -4118, -4119, -24, 8167, 16358, 16357, -28, -32797, -65566, -65567, -32, 131039, 262110, 262109, -36, -524325, -1048614, -1048615, -40, 2097111, 4194262, 4194261, -44
Offset: 0

Views

Author

Jesse Fiedler, Aug 21 2019

Keywords

Comments

Observe that (starting with n=1) the sequence has a pattern of a cluster of 3 positive numbers followed by a cluster of 5 negative numbers.
Observe also if the clusters of 3 positive numbers are represented by x, y, z; then y = (x * 2) + (8 * k) where k a positive integer ; when this happens, k = (n - 1) / 8 ; therefore y = x * 2 + n - 1; z = y - 1
Observe also that within each cluster of 5 negative numbers, the first and last are orders of magnitude less than the middle 3 values. The first and last always differ by 4 and are always equal to -n.
Observe also if the clusters of 5 negative numbers are represented by c, d, e, f, g ; then d - c = e - d; f = e - 1; g = c - 4

Examples

			For n = -1; b(n) = 0
For n =  0; b(n) = (0+0)*(1+i) = 0
For n =  1; b(n) = (1+0)*(1+i) = 1+i ; a(1) = Re(1+i) = 1
For n =  2; b(n) = (2+1+i)*(1+i) = (3+i)*(1+i) = 3+i+3i-1 = 2+4i ; a(2) = Re(2+4i) = 2
For n =  3; b(n) = 1+9i ; a(3) = 1
For n =  4; b(n) = -4+14i ; a(4) = -4
For n =  5; b(n) = -13+15i ; a(5) = -13
For n =  6; b(n) = -22+8i ; a(6) = -22
For n =  7; b(n) = -23-7i ; a(7) = -23
...
For n =  31; b(n) = -65567-65503i ; a(31) = -65567
For n =  32; b(n) = (32-65567-65503i)*(1+i) = (-65535-65503i)*(1+i) = -65535-65503i-65535i+65503 = -32-131038i ; a(32) = -32
For n =  33; b(n) = 131039-131037i ; a(33) = 131039
		

Programs

  • PARI
    b(n) = if (n==0, 0, (n + b(n-1)) * (1 + I));
    for (n=0, 50, print1(real(b(n)), ", ")) \\ Michel Marcus, Aug 21 2019

Formula

Conjectures from Colin Barker, Aug 21 2019: (Start)
G.f.: x*(1 - 2*x) / ((1 - x)^2*(1 - 2*x + 2*x^2)).
a(n) = 4*a(n-1) - 7*a(n-2) + 6*a(n-3) - 2*a(n-4) for n>3.
a(n) = i*((1-i)^n - (1+i)^n + i*n) where i=sqrt(-1).
(End)
E.g.f.: exp(x)*(-x + 2*sin(x)). - Conjectured by Stefano Spezia, Aug 21 2019 after Colin Barker
Conjecture: a(n) = 2*A009545(n)-n. - R. J. Mathar, Mar 06 2022
All conjectures stated above hold true. See links. - Sela Fried, Jul 27 2024.

A316386 Binomial transform of [0, 1, 2, -3, -4, 5, 6, -7, -8, ...].

Original entry on oeis.org

0, 1, 4, 6, 0, -20, -48, -56, 0, 144, 320, 352, 0, -832, -1792, -1920, 0, 4352, 9216, 9728, 0, -21504, -45056, -47104, 0, 102400, 212992, 221184, 0, -475136, -983040, -1015808, 0, 2162688, 4456448, 4587520, 0, -9699328, -19922944, -20447232, 0, 42991616
Offset: 0

Views

Author

Paul Curtz, Jul 01 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(x*(1-2*x^2)/(1-2*x+2*x^2)^2, x,n+1),x,n),n=0..45); # Muniru A Asiru, Jul 01 2018
  • Mathematica
    CoefficientList[Series[x (1 - 2 x^2)/(1 - 2 x + 2 x^2)^2, {x, 0, 41}], x] (* Michael De Vlieger, Jul 01 2018 *)
    LinearRecurrence[{4, -8, 8, -4}, {0, 1, 4, 6}, 42] (* Robert G. Wilson v, Jul 15 2018 *)
  • PARI
    concat(0, Vec(x*(1 - 2*x^2) / (1 - 2*x + 2*x^2)^2 + O(x^40))) \\ Colin Barker, Jul 01 2018

Formula

a(n) = n * A009545(n).
a(n+1) = a(n) + A140230(n).
From Colin Barker, Jul 01 2018: (Start)
G.f.: x*(1 - 2*x^2) / (1 - 2*x + 2*x^2)^2.
a(n) = 4*a(n-1) - 8*a(n-2) + 8*a(n-3) - 4*a(n-4) for n>3.
a(n) = i*(((1-i)^n - (1+i)^n)*n) / 2 where i=sqrt(-1).
(End)

Extensions

More terms from Colin Barker, Jul 01 2018

A323225 a(n) = ((2^n*n + i*(1 - i)^n - i*(1 + i)^n))/4, where i is the imaginary unit.

Original entry on oeis.org

0, 1, 3, 7, 16, 38, 92, 220, 512, 1160, 2576, 5648, 12288, 26592, 57280, 122816, 262144, 557184, 1179904, 2490624, 5242880, 11009536, 23067648, 48233472, 100663296, 209717248, 436211712, 905973760, 1879048192, 3892305920, 8053047296, 16642981888, 34359738368
Offset: 0

Views

Author

Peter Luschny, Mar 18 2019

Keywords

Comments

Related to Clifford algebras (see A323100 and A323346).

Crossrefs

Antidiagonal sums of A323346.

Programs

  • Maple
    a := n -> ((2^n*n + I*(1 - I)^n - I*(1 + I)^n))/4:
    seq(a(n), n=0..32);
  • Mathematica
    LinearRecurrence[{6, -14, 16, -8}, {0, 1, 3, 7}, 40] (* Jean-François Alcover, Mar 20 2019 *)
    Table[((2^n n + I (1 - I)^n - I (1 + I)^n))/4, {n, 0, 29}] (* Alonso del Arte, Mar 27 2020 *)

Formula

a(n) = Sum_{k = 0..n} A323346(n - k, k - 1).
a(n) = (A001787(n) + A009545(n))/2.
a(n) = [x^n] (x*(3*x^2 - 3*x + 1))/((2*x - 1)^2*(2*x^2 - 2*x + 1)).
a(n) = n! [x^n] (exp(2*x)*x + exp(x)*sin(x))/2.
a(n) = (4*n*a(n-3) + (2 - 6*n)*a(n-2) + (4*n - 2)*a(n-1))/(n - 1) for n >= 3.

A370359 Imaginary part of (n + n*i)^n where i = sqrt(-1).

Original entry on oeis.org

0, 1, 8, 54, 0, -12500, -373248, -6588344, 0, 6198727824, 320000000000, 9129973459552, 0, -19384006821904192, -1422336873671426048, -56050417968750000000, 0, 211773507042902211629312, 20145360934551827238617088, 1012950863698080557631477248, 0, -5982809106827246101894271407104
Offset: 0

Views

Author

Chai Wah Wu, Feb 16 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = imag((n + n*I)^n); \\ Michel Marcus, Feb 16 2024
  • Python
    def A370359(n): return n**n*((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1)
    

Formula

a(n) = n^n*A009545(n) = n^n*Sum_{j=0..floor((n-1)/2)} binomial(n,2*j+1)*(-1)^j.
a(n) = 0 if and only if n == 0 mod 4.
a(4n) = 0.
a(4n+1) = (4n+1)^(4n+1)*(-4)^n.
a(4n+2) = 2*(4n+2)^(4n+2)*(-4)^n.
a(4n+3) = 2*(4n+3)^(4n+3)*(-4)^n.

A101892 a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*J(k), where J = A001045.

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 33, 77, 187, 459, 1121, 2717, 6555, 15795, 38081, 91893, 221867, 535755, 1293633, 3123277, 7540187, 18203139, 43945441, 106092997, 256131435, 618357915, 1492851361, 3604064733, 8700980827, 21006018195, 50713000833
Offset: 0

Views

Author

Paul Barry, Dec 22 2004

Keywords

Comments

Transform of A001045 under the mapping g(x)-> (1/(1-x))*g(x^2/((1-x)^2)). Binomial transform of aerated Jacobsthal numbers 0,0,1,0,1,0,3,0,5,0,11,...
J(n) may be recovered as Sum_{k=0..2*n} Sum_{j=0..k} C(0,2*n-k)*C(k,j)*(-1)^(k-j)*a(j). - Paul Barry, Jun 10 2005

Crossrefs

Formula

G.f.: x^2*(1 - x)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + 2*a(n-4).
a(n) = Sum_{k=0..n} binomial(n, k)*A001045(k/2)*(1+(-1)^k)/2.
a(n) = (1/6)*( 2*A001333(n) - A009545(n+2) ). - Ralf Stephan, May 17 2007

A132402 Binomial transform of A004524 starting at 1.

Original entry on oeis.org

1, 3, 7, 15, 32, 70, 156, 348, 768, 1672, 3600, 7696, 16384, 34784, 73664, 155584, 327680, 688256, 1442048, 3014912, 6291456, 13106688, 27261952, 56622080, 117440512, 243271680, 503320576, 1040191488, 2147483648
Offset: 0

Views

Author

Paul Curtz, Nov 12 2007

Keywords

Comments

Twisted numbers. b(n)=a(n)-2^n=0, 1, 3, 7, 16, 38, 92, 220, 512, 1160, 2576, twisted numbers. b(n+1)-2b(n)=1, 1, 1, 2, 6, 16, 36, 72, 136, 256.

Programs

  • Mathematica
    LinearRecurrence[{6,-14,16,-8},{1,3,7,15},30] (* Harvey P. Dale, Mar 30 2022 *)

Formula

a(n+1)-2a(n) = 1, 1, 1, 2, 6, 16, 36, 72, 136, 256 = essentially A038503.
O.g.f.: (1-x)^3/[(1-2x+2x^2)(-1+2x)^2]. a(n)=6*a(n-1)-14*a(n-2)+16*a(n-3)-8*a(n-4). - R. J. Mathar, Apr 02 2008
4*a(n) = (n+4)*2^n+2*A009545(n). - R. J. Mathar, Nov 01 2021

Extensions

More terms from R. J. Mathar, Apr 02 2008
Previous Showing 41-50 of 53 results. Next