cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 97 results. Next

A051250 Numbers whose reduced residue system consists of 1 and prime powers only.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 18, 20, 24, 30, 42, 60
Offset: 1

Views

Author

Keywords

Comments

From Reinhard Zumkeller, Oct 27 2010: (Start)
Conjecture: the sequence is finite and 60 is the largest term, empirically verified up to 10^7;
A139555(a(n)) = A000010(a(n)). (End)
The sequence is indeed finite. Let pi*(x) denote the number of prime powers (including 1) up to x. Dusart's bounds plus finite checking [up to 60184] shows that pi*(x) <= x/(log(x) - 1.1) + sqrt(x) for x >= 4. phi(n) > n/(e^gamma log log n + 3/(log log n)) for n >= 3. Convexity plus finite checking [up to 1096] allows a quick proof that phi(n) > pi*(n) for n > 420. So if n > 420, the reduced residue system mod n must contain at least one number that is neither 1 nor a prime power. Hence 60 is the last term in the sequence. - Charles R Greathouse IV, Jul 14 2011

Examples

			RRS[ 60 ] = {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}.
		

Crossrefs

Programs

  • Haskell
    a051250 n = a051250_list !! (n-1)
    a051250_list = filter (all ((== 1) . a010055) . a038566_row) [1..]
    -- Reinhard Zumkeller, May 27 2015, Dec 18 2011, Oct 27 2010
    
  • Mathematica
    fQ[n_] := Union[# == 1 || Mod[#, # - EulerPhi[#]] == 0 & /@ Select[ Range@ n, GCD[#, n] == 1 &]] == {True}; Select[ Range@ 100, fQ] (* Robert G. Wilson v, Jul 11 2011 *)
  • PARI
    isprimepower(n)=ispower(n,,&n);isprime(n)
    is(n)=for(k=2,n-1,if(gcd(n,k)==1&&!isprimepower(k),return(0)));1 \\ Charles R Greathouse IV, Jul 14 2011

A341123 Number of partitions of n into 5 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 23, 25, 32, 34, 42, 45, 55, 56, 68, 71, 83, 84, 100, 100, 117, 118, 136, 135, 158, 153, 179, 178, 204, 200, 234, 226, 261, 255, 291, 283, 327, 310, 357, 344, 390, 371, 430, 405, 466, 444, 505, 476, 550, 511, 589, 557, 634, 589, 684, 629
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 5):
    seq(a(n), n=5..64);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 5];
    Table[a[n], {n, 5, 64}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A100994 If n is a prime power p^m, m >= 1, then n, otherwise 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 1, 11, 1, 13, 1, 1, 16, 17, 1, 19, 1, 1, 1, 23, 1, 25, 1, 27, 1, 29, 1, 31, 32, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 49, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 64, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 81, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 26 2004

Keywords

Comments

a(n) is the smallest positive integer such that n divides lcm(a(1), a(2), a(3), ..., a(n)), for all positive integers n. - Leroy Quet, May 01 2007

Crossrefs

Programs

Formula

a(n) = A014963(n)^A100995(n) = n^A010055(n);
a(A000961(n)) = A000961(n).
a(n) = 1 + (n-1)*floor(1/A001221(n)) for n > 1. - Enrique Pérez Herrero, Sep 24 2011

Extensions

Definition edited to remove ambiguity by Daniel Forgues, Aug 18 2009

A223490 Smallest Fermi-Dirac factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 2, 9, 2, 11, 3, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 2, 25, 2, 3, 4, 29, 2, 31, 2, 3, 2, 5, 4, 37, 2, 3, 2, 41, 2, 43, 4, 5, 2, 47, 3, 49, 2, 3, 4, 53, 2, 5, 2, 3, 2, 59, 3, 61, 2, 7, 4, 5, 2, 67, 4, 3, 2, 71, 2, 73, 2, 3, 4, 7, 2, 79
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2013

Keywords

Comments

Note that this is not equal to the smallest Fermi-Dirac prime (A050376) dividing n, which is always A020639(n). - Antti Karttunen, Apr 15 2018

Crossrefs

Cf. A223491, A050376, A028233, A000040 (subsequence).
Cf. also A020639.

Programs

  • Haskell
    a223490 = head . a213925_row
    
  • Mathematica
    f[p_, e_] := p^(2^IntegerExponent[e, 2]); a[n_] := Min @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    up_to = 65537;
    v050376 = vector(up_to);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A001511(n) = 1+valuation(n,2);
    A223490(n) = if(1==n,n,A050376(A001511(A052331(n)))); \\ Antti Karttunen, Apr 15 2018

Formula

a(n) = A213925(n,1).
A209229(A100995(a(n))) = 1; A010055(a(n)) = 1.
From Antti Karttunen, Apr 15 2018: (Start)
a(1) = 1; and for n > 1, a(n) = A050376(A302786(n)).
a(n) = n / A302792(n).
a(n) = A302023(A020639(A302024(n))).
(End)

A341122 Number of partitions of n into 4 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 8, 9, 12, 13, 17, 17, 22, 22, 26, 27, 33, 31, 39, 38, 44, 43, 51, 47, 58, 54, 63, 60, 71, 64, 79, 74, 88, 82, 99, 88, 108, 97, 116, 105, 126, 110, 134, 119, 141, 126, 153, 133, 164, 143, 172, 149, 184, 155, 194, 168, 204, 173, 215, 180, 227, 192, 238
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 4):
    seq(a(n), n=4..66);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 4];
    Table[a[n], {n, 4, 66}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341124 Number of partitions of n into 6 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 17, 20, 27, 31, 41, 45, 56, 63, 77, 83, 101, 108, 128, 136, 160, 168, 196, 204, 236, 245, 281, 288, 331, 340, 387, 395, 450, 457, 519, 525, 594, 598, 677, 678, 763, 764, 855, 851, 957, 949, 1062, 1053, 1177, 1161, 1300, 1276, 1425, 1403, 1564
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 6):
    seq(a(n), n=6..62);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 6];
    Table[a[n], {n, 6, 62}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)

A341132 Number of partitions of n into 2 distinct prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 5, 4, 3, 2, 5, 3, 4, 4, 5, 3, 6, 3, 6, 5, 6, 4, 7, 2, 5, 4, 6, 3, 6, 3, 6, 5, 5, 2, 8, 3, 7, 4, 6, 2, 8, 3, 7, 4, 5, 2, 8, 3, 6, 4, 6, 3, 9, 2, 8, 5, 7, 2, 10, 3, 7, 6, 7, 3, 9, 2, 9, 4, 6, 4, 11, 3, 8, 4, 7, 3, 12
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 2):
    seq(a(n), n=3..90);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = PrimeNu[n] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 2];
    Table[a[n], {n, 3, 90}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)

A139555 a(n) = number of prime-powers (including 1) that each are <= n and are coprime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 5, 4, 6, 4, 8, 4, 9, 6, 7, 7, 11, 6, 12, 8, 10, 8, 13, 8, 13, 10, 13, 11, 16, 8, 17, 14, 15, 13, 16, 11, 19, 14, 16, 13, 20, 12, 21, 16, 17, 16, 22, 15, 22, 17, 20, 18, 24, 17, 22, 18, 21, 19, 25, 16, 26, 21, 22, 22, 25, 18, 28, 22, 25, 19, 29, 21, 30, 24, 26, 24
Offset: 1

Views

Author

Leroy Quet, Apr 27 2008

Keywords

Comments

Indices of first occurrence of each natural number: 1, 3, 5, 7, 9, 15, 11, 13, 21, 17, 19, 23, 32, 33, ..., . - Robert G. Wilson v
From Reinhard Zumkeller, Oct 27 2010: (Start)
a(n) <= A000010(n); a(A051250(n)) = A000010(A051250(n)), 1 <= n <= 17;
conjecture: a(n) < A000010(n) for n > 60, cf. A051250. (End)

Examples

			All the positive integers <= 21 that are coprime to 21 are 1,2,4,5,8,10,11,13,16,17,19,20. Of these integers, only 1,2,4,5,8,11,13,16,17,19 are prime-powers. There are 10 of these prime-powers; so a(21) = 10.
		

Crossrefs

Cf. A139556.
Cf. A065515. - Reinhard Zumkeller, Oct 27 2010

Programs

  • Haskell
    a139555 = sum . map a010055 . a038566_row
    -- Reinhard Zumkeller, Feb 23 2012, Oct 27 2010
  • Maple
    isA000961 := proc(n) if n = 1 or isprime(n) then true; else RETURN(nops(ifactors(n)[2]) =1) ; fi ; end: A139555 := proc(n) local a,i; a := 0 ; for i from 1 to n do if isA000961(i) and gcd(i,n) = 1 then a := a+1 ; fi ; od: a ; end: seq(A139555(n),n=1..100) ; # R. J. Mathar, May 12 2008
  • Mathematica
    f[n_] := Length@ Select[Range@ n, Length@ FactorInteger@ # == 1 == GCD[n, # ] &]; Array[f, 76] (* Robert G. Wilson v *)

Formula

a(n) = Sum_{k=1..A000010(n)} A010055(A038566(n,k)). - Reinhard Zumkeller, Feb 23 2012

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, May 12 2008

A210208 Triangle read by rows in which row n lists the divisors of n that are prime powers, A000961.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 1, 11, 1, 2, 3, 4, 1, 13, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 9, 1, 19, 1, 2, 4, 5, 1, 3, 7, 1, 2, 11, 1, 23, 1, 2, 3, 4, 8, 1, 5, 25, 1, 2, 13, 1, 3, 9, 27, 1, 2, 4, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2012

Keywords

Comments

{T(n,k): k = 1..A073093(n)} subset of {A027750(n,k): k = 1..A000005(n)} for all n.

Examples

			Table begins:
  1;
  1, 2;
  1, 3;
  1, 2, 4;
  1, 5;
  1, 2, 3;
  1, 7;
  1, 2, 4, 8;
  1, 3, 9;
  1, 2, 5;
  1, 11;
  1, 2, 3, 4; - _Geoffrey Critzer_, Feb 08 2015
		

Crossrefs

Cf. A073093 (row lengths), A023888 (row sums), A034699 (row maxima), A183091 (row products).

Programs

  • Haskell
    a210208 n k = a210208_tabf !! (n-1) !! (n-1)
    a210208_row n = a210208_tabf !! (n-1)
    a210208_tabf = map (filter ((== 1) . a010055)) a027750_tabf
    
  • Mathematica
    Table[Prepend[Select[Divisors[n], PrimeNu[#] == 1 &], 1], {n, 1, 10}]//Grid (* Geoffrey Critzer, Feb 08 2015 *)
  • PARI
    row(n) = select(x -> omega(x) < 2, divisors(n)); \\ Amiram Eldar, May 02 2025

Formula

A034699(n) = T(n,A073093(n)) = maximum of n-th row.

A341112 Number of partitions of n into 3 prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 6, 8, 8, 10, 9, 12, 10, 13, 12, 15, 13, 17, 15, 18, 15, 19, 16, 21, 17, 23, 18, 24, 19, 27, 23, 30, 24, 32, 25, 32, 26, 34, 26, 36, 26, 36, 28, 38, 28, 40, 30, 42, 32, 43, 30, 45, 32, 47, 35, 49, 30, 50, 35, 51, 36, 53, 35, 55, 37, 54, 40, 57, 36, 61, 40, 61
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i), t-1), 0)))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=3..75);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i], t - 1], 0]]];
    a[n_] := b[n, n, 3];
    Table[a[n], {n, 3, 75}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)
Previous Showing 21-30 of 97 results. Next