cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A378390 Decimal expansion of the surface area of a deltoidal icositetrahedron with unit shorter edge length.

Original entry on oeis.org

3, 0, 6, 9, 4, 8, 9, 5, 7, 2, 4, 0, 3, 1, 0, 0, 9, 5, 9, 0, 7, 7, 0, 3, 1, 4, 7, 8, 4, 0, 5, 0, 6, 7, 3, 3, 8, 7, 9, 6, 5, 1, 0, 7, 4, 6, 3, 1, 6, 1, 0, 1, 8, 7, 7, 3, 0, 7, 0, 1, 5, 3, 8, 6, 7, 0, 2, 7, 7, 7, 1, 9, 8, 7, 8, 9, 1, 2, 5, 1, 5, 6, 7, 7, 9, 0, 3, 1, 3, 6
Offset: 2

Views

Author

Paolo Xausa, Nov 29 2024

Keywords

Comments

The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.

Examples

			30.694895724031009590770314784050673387965107463161...
		

Crossrefs

Cf. A378391 (volume), A378392 (inradius), A378393 (midradius), A378394 (dihedral angle).
Cf. A343964 (surface area of a (small) rhombicuboctahedron with unit edge).
Cf. A010466.

Programs

  • Mathematica
    First[RealDigits[6*Sqrt[29 - Sqrt[8]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6*sqrt(29 - 2*sqrt(2)) = 6*sqrt(29 - A010466).

A041010 Numerators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

2, 3, 14, 17, 82, 99, 478, 577, 2786, 3363, 16238, 19601, 94642, 114243, 551614, 665857, 3215042, 3880899, 18738638, 22619537, 109216786, 131836323, 636562078, 768398401, 3710155682, 4478554083, 21624372014, 26102926097, 126036076402, 152139002499
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A040005 (continued fraction), A041011 (denominators), A010466 (decimals).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[8],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
    CoefficientList[Series[(2 + 3*x + 2*x^2 - x^3)/(1 - 6*x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := -((3-2*Sqrt[2])^n*(1+Sqrt[2]))+(-1+Sqrt[2])*(3+2*Sqrt[2])^n // Simplify
    a1[n_] := ((3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
  • PARI
    A041010=contfracpnqn(c=contfrac(sqrt(8)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041010[n+1]! For more terms use:
    A041010(n)={n<#A041010|| A041010=extend(A041010, [-1,0,6,0]~, n\.8); A041010[n+1]}
    extend(A,c,N)={for(n=#A+1,#A=Vec(A,N), A[n]=A[n-#c..n-1]*c);A} \\ (End)

Formula

a(n) = 6*a(n-2) - a(n-4).
a(2n) = a(2n-1) + a(2n-2), a(2n+1) = 4*a(2n) + a(2n-1).
a(2n) = A001333(2n), a(2n+1) = 2*A001333(2n+1).
G.f.: (2+3*x+2*x^2-x^3)/(1-6*x^2+x^4).
a(n) = A001333(n+1)*A000034(n+1). - R. J. Mathar, Jul 08 2009
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = -((3-2*sqrt(2))^n*(1+sqrt(2))) + (-1+sqrt(2))*(3+2*sqrt(2))^n.
a1(n) = ((3-2*sqrt(2))^n + (3+2*sqrt(2))^n)/2. (End)

Extensions

Entry improved by Michael Somos
Initial term 1 removed and b-file, program and formulas adapted by Georg Fischer, Jul 01 2019
Cross-references added by M. F. Hasler, Nov 02 2019

A265795 Denominators of primes-only best approximates (POBAs) to sqrt(8); see Comments.

Original entry on oeis.org

2, 2, 5, 7, 11, 59, 127, 163, 233, 653, 991, 1597, 11447, 12671, 70489
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs to sqrt(8) start with 7/2, 5/2, 13/5, 19/7, 31/11, 167/59, 359/127, 461/163, 659/233. For example, if p and q are primes and q > 59, then 167/59 is closer to sqrt(8) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[8]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265794/A265795 *)
    Numerator[tL]   (* A265790 *)
    Denominator[tL] (* A265791 *)
    Numerator[tU]   (* A265792 *)
    Denominator[tU] (* A265793 *)
    Numerator[y]    (* A265794 *)
    Denominator[y]  (* A265795 *)

Extensions

a(13)-a(15) from Robert Price, Apr 06 2019

A384214 Decimal expansion of the volume of a gyroelongated square cupola with unit edge.

Original entry on oeis.org

6, 2, 1, 0, 7, 6, 5, 7, 9, 2, 0, 3, 9, 2, 0, 0, 0, 3, 6, 6, 5, 8, 2, 2, 8, 8, 3, 3, 4, 5, 9, 8, 0, 7, 3, 1, 6, 9, 6, 0, 1, 0, 0, 3, 2, 0, 9, 1, 3, 7, 4, 5, 1, 7, 8, 3, 6, 4, 1, 8, 1, 7, 0, 5, 4, 3, 7, 9, 9, 6, 0, 4, 6, 7, 0, 8, 9, 3, 8, 4, 9, 5, 9, 9, 9, 4, 2, 7, 1, 3
Offset: 1

Views

Author

Paolo Xausa, May 23 2025

Keywords

Comments

The gyroelongated square cupola is Johnson solid J_23.

Examples

			6.21076579203920003665822883345980731696010032091...
		

Crossrefs

Cf. A384215 (surface area).

Programs

  • Mathematica
    First[RealDigits[1 + Sqrt[8]/3 + 2/3*Sqrt[4 + Sqrt[8] + 2*Sqrt[146 + 103*Sqrt[2]]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J23", "Volume"], 10, 100]]

Formula

Equals 1 + (2/3)*sqrt(2) + (2/3)*sqrt(4 + 2*sqrt(2) + 2*sqrt(146 + 103*sqrt(2))) = 1 + A010466/3 + (2/3)*sqrt(4 + A010466 + 2*sqrt(146 + 103*A002193)).
Equals the largest real root of 6561*x^8 - 52488*x^7 + 113724*x^6 - 9720*x^5 - 1616922*x^4 + 396360*x^3 + 1537020*x^2 - 178632*x - 3391.

A384215 Decimal expansion of the surface area of a gyroelongated square cupola with unit edge.

Original entry on oeis.org

1, 8, 4, 8, 8, 6, 8, 1, 1, 6, 2, 5, 9, 0, 5, 7, 6, 5, 6, 5, 2, 4, 0, 6, 0, 9, 1, 5, 5, 9, 4, 8, 7, 5, 7, 9, 9, 1, 8, 5, 3, 3, 7, 0, 0, 1, 9, 8, 0, 5, 7, 9, 9, 2, 8, 6, 6, 3, 2, 3, 9, 4, 3, 7, 3, 2, 4, 1, 1, 3, 0, 0, 4, 1, 4, 6, 8, 2, 1, 4, 2, 6, 3, 1, 0, 6, 5, 0, 6, 0
Offset: 2

Views

Author

Paolo Xausa, May 23 2025

Keywords

Comments

The gyroelongated square cupola is Johnson solid J_23.

Examples

			18.4886811625905765652406091559487579918533700198...
		

Crossrefs

Cf. A384214 (volume).

Programs

  • Mathematica
    First[RealDigits[7 + Sqrt[8] + Sqrt[75], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J23", "SurfaceArea"], 10, 100]]

Formula

Equals 7 + 2*sqrt(2) + 5*sqrt(3) = 7 + A010466 + 5*A002194.
Equals the largest root of x^4 - 28*x^3 + 128*x^2 + 952*x - 1244.

A385258 Decimal expansion of the volume of a gyroelongated square bicupola with unit edge.

Original entry on oeis.org

8, 1, 5, 3, 5, 7, 4, 8, 3, 3, 6, 2, 1, 2, 6, 3, 4, 0, 2, 5, 2, 6, 0, 2, 1, 3, 1, 6, 2, 6, 6, 2, 7, 2, 7, 0, 2, 6, 7, 3, 2, 1, 4, 9, 0, 4, 4, 9, 8, 3, 7, 7, 2, 2, 7, 1, 4, 8, 6, 3, 4, 8, 6, 4, 0, 9, 8, 4, 8, 4, 3, 6, 5, 6, 8, 3, 6, 7, 6, 5, 2, 1, 8, 9, 9, 6, 8, 5, 4, 9
Offset: 1

Views

Author

Paolo Xausa, Jun 26 2025

Keywords

Comments

The gyroelongated square bicupola is Johnson solid J_45.

Examples

			8.1535748336212634025260213162662727026732149...
		

Crossrefs

Cf. A385259 (surface area).

Programs

  • Mathematica
    First[RealDigits[2/3*(3 + 2*# + Sqrt[2*(2 + # + Sqrt[146 + 103*#])]) & [Sqrt[2]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J45", "Volume"], 10, 100]]

Formula

Equals (2/3)*(3 + 2*sqrt(2) + sqrt(2*(2 + sqrt(2) + sqrt(146 + 103*sqrt(2))))) = (2/3)*(3 + A010466 + sqrt(2*(2 + A002193 + sqrt(146 + 103*A002193)))).
Equals the largest real root of 6561*x^8 - 104976*x^7 + 594864*x^6 - 1384128*x^5 - 552096*x^4 + 1569024*x^3 + 246528*x^2 - 119808*x + 4352.

A011006 Decimal expansion of 4th root of 8.

Original entry on oeis.org

1, 6, 8, 1, 7, 9, 2, 8, 3, 0, 5, 0, 7, 4, 2, 9, 0, 8, 6, 0, 6, 2, 2, 5, 0, 9, 5, 2, 4, 6, 6, 4, 2, 9, 7, 9, 0, 0, 8, 0, 0, 6, 8, 5, 2, 4, 7, 1, 3, 5, 6, 9, 0, 2, 1, 6, 2, 6, 4, 5, 2, 1, 7, 1, 9, 4, 9, 8, 4, 9, 5, 0, 9, 9, 0, 7, 8, 0, 4, 4, 7, 9, 6, 2, 8, 6, 4, 8, 0, 0, 8, 3, 9, 8, 5, 8, 5, 0, 7
Offset: 1

Views

Author

Keywords

Examples

			1.68179283...
		

Programs

Formula

Equals 2*A228497 =2^(3/4) = sqrt(A010466). - R. J. Mathar, Jan 15 2021

A280533 Decimal expansion of 14*sin(Pi/14).

Original entry on oeis.org

3, 1, 1, 5, 2, 9, 3, 0, 7, 5, 3, 8, 8, 4, 0, 1, 6, 6, 0, 0, 4, 4, 6, 3, 5, 9, 0, 2, 9, 5, 5, 1, 2, 6, 6, 3, 2, 5, 2, 8, 9, 7, 7, 9, 6, 2, 7, 0, 3, 6, 2, 9, 3, 7, 4, 3, 6, 7, 8, 1, 8, 2, 2, 2, 5, 6, 3, 8, 9, 7, 2, 4, 8, 3, 9, 9, 6, 6, 2, 4, 6, 7, 0, 4, 4, 1, 3, 4, 7, 3, 6, 5, 1, 3, 0, 2, 1, 3, 8, 8, 8, 8, 2, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jan 04 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 7-gon (heptagon) to its diameter (largest diagonal).

Examples

			3.115293075388401660044635902955126632528977962703629374367818222563897248...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280585 (n=8), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A232736.

Programs

  • Mathematica
    RealDigits[14*Sin[Pi/14], 10, 129][[1]] (* G. C. Greubel, Sep 20 2022 *)
  • PARI
    14*sin(Pi/14)
    
  • SageMath
    numerical_approx(14*sin(pi/14), digits=127) # G. C. Greubel, Sep 20 2022

Formula

Equals 14*A232736.

A335930 Decimal expansion of the arclength on y = sin(x) from (0,0) to (Pi,0).

Original entry on oeis.org

3, 8, 2, 0, 1, 9, 7, 7, 8, 9, 0, 2, 7, 7, 1, 2, 0, 1, 7, 9, 0, 4, 7, 6, 2, 0, 8, 2, 1, 7, 1, 4, 4, 3, 2, 9, 1, 9, 0, 9, 9, 6, 7, 6, 1, 4, 6, 4, 7, 2, 7, 4, 7, 2, 1, 0, 8, 0, 4, 9, 6, 6, 5, 6, 7, 4, 7, 1, 9, 5, 8, 0, 1, 2, 1, 4, 3, 2, 9, 9, 2, 1, 0, 6, 6, 1, 8, 1, 0, 8
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2020

Keywords

Comments

Also the arclength between consecutive points of intersection of y = sin(x) and y = cos(x).

Examples

			arclength = 3.8201977890277120179047620821714432919099676146...
		

Crossrefs

Programs

  • Mathematica
    r = NIntegrate[Sqrt[1 + Cos[t]^2], {t, 0, Pi}, WorkingPrecision -> 200]
    RealDigits[r][[1]]
    First[RealDigits[Sqrt[8]*EllipticE[1/2], 10, 100]] (* Paolo Xausa, Nov 14 2024 *)

Formula

From Paolo Xausa, Nov 14 2024: (Start)
Equals Pi/A062539 + A062539 = A053004 + A062539.
Equals A010466*A257407. (End)
Equals A105419/2 = 2*A256667. - Hugo Pfoertner, Nov 14 2024

A194381 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) < 0, where r=sqrt(8) and < > denotes fractional part.

Original entry on oeis.org

1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[8]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t1, 1]]   (* A194381 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]   (* A194382 *)
    %/2  (* A194383 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 600}];
    Flatten[Position[t3, 1]]   (* A194384 *)
Previous Showing 11-20 of 69 results. Next