cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A226044 Period of length 8: 1, 64, 16, 64, 4, 64, 16, 64.

Original entry on oeis.org

1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64
Offset: 0

Views

Author

Paul Curtz, May 24 2013

Keywords

Comments

A002378(n)/A016754(n) gives 0/1, 2/9, 6/25, 12/49, 20/81, 30/121, 42/169, 56/225,..., where A016754(n) = 4*A002378(n) + 1;
A142705(n)/A154615(n+1) gives 0/1, 3/16, 2/9, 15/64, 6/25, 35/144, 12/49, 63/256,..., where A142705(n) = 4*A154615(n+1) + A010685(n);
A061037(n)/A061038(n) gives 0/1, 5/36, 3/16, 21/100, 2/9, 45/196, 15/64, 77/324,..., where A061038(n) = 4*A061037(n) + A177499(n);
A225948(n)/A226008(n) gives 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484,..., where A226008(n) = 4*A225948(n) + a(n).
See also the triangle in Example lines.

Examples

			Triangle in which the terms of each line are repeated:
A000012: 1,   ...
A010685: 1,   4,  ...
A177499: 1,  16,  4,  16,  ...
A226044: 1,  64, 16,  64,  4,  64, 16,  64, ...
         1, 256, 64, 256, 16, 256, 64, 256, 4, 256, 64, 256, 16, 256, 64, 256, ...
		

Crossrefs

Programs

Formula

a(n) = A205383(n+7)^2.
G.f.: (1+64*x+16*x^2+64*x^3+4*x^4+64*x^5+16*x^6+64*x^7)/((1-x)*(1+x)*(1+x^2)*(1+x^4)). [Bruno Berselli, May 25 2013]

A136258 a(n) = 2*a(n-1) - 2*a(n-2), with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 8, 6, -4, -20, -32, -24, 16, 80, 128, 96, -64, -320, -512, -384, 256, 1280, 2048, 1536, -1024, -5120, -8192, -6144, 4096, 20480, 32768, 24576, -16384, -81920, -131072, -98304, 65536, 327680, 524288, 393216, -262144, -1310720, -2097152, -1572864, 1048576
Offset: 0

Views

Author

Paul Curtz, Mar 18 2008

Keywords

Comments

Sequence opposite in sign to its second differences.
Binomial transform of 1, 4, -1, -4.
A bisection gives A135520.
This sequence with offset 0 is the binomial transform of (-1)^floor(n/2)*A010685(n). - R. J. Mathar, Feb 22 2009

Crossrefs

Programs

  • Magma
    [n le 2 select 5^(n-1) else 2*(Self(n-1) - Self(n-2)): n in [1..41]]; // G. C. Greubel, Dec 02 2021
    
  • Mathematica
    LinearRecurrence[{2,-2},{1,5},50] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    vector(100,n,t=if(n<3,[t1=1,5][n],-2*t1+2*t1=t)) \\ M. F. Hasler, May 01 2008
    
  • Sage
    A136258=BinaryRecurrenceSequence(2,-2,1,5)
    [A136258(n) for n in (0..40)] # G. C. Greubel, Dec 02 2021

Formula

a(4n+1) = 5*(-4)^n, a(4n+3) = 6*(-4)^n. - M. F. Hasler, May 01 2008
G.f.: x*(1+3*x)/(1-2*x+2*x^2). - R. J. Mathar, Feb 22 2009
From Paul Curtz, Apr 27 2011: (Start)
a(n)= -4 * a(n-4).
a(n)= 3*A009545(n) + A009545(n+1). (End)
E.g.f.: exp(x)*( cos(x) + 4*sin(x) ). - G. C. Greubel, Dec 02 2021

Extensions

Edited and extended by M. F. Hasler, May 01 2008
Offset corrected Paul Curtz, Apr 27 2011

A171475 a(n) = 6*a(n-1) - 8*a(n-2), for n > 2, with a(0) = 1, a(1) = 6, a(2) = 27.

Original entry on oeis.org

1, 6, 27, 114, 468, 1896, 7632, 30624, 122688, 491136, 1965312, 7862784, 31454208, 125822976, 503304192, 2013241344, 8053014528, 32212156416, 128848822272, 515395682304, 2061583515648, 8246335635456, 32985345687552
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Binomial transform of A037480; second binomial transform of A133600.
First differences of A080960.

Crossrefs

Cf. A037480 ((5*3^n +(-1)^n -6)/8), A133600 (row sums of triangle A133599), A080960 (third binomial transform of A010685).

Programs

  • Magma
    I:=[6,27]; [1] cat [n le 2 select I[n] else 6*Self(n-1) - 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 02 2021
    
  • Mathematica
    Table[If[n==0, 1, 3*(5*4^n - 2*2^n)/8],{n,0,30}] (* G. C. Greubel, Dec 02 2021 *)
    LinearRecurrence[{6,-8},{1,6,27},30] (* Harvey P. Dale, Oct 25 2023 *)
  • PARI
    {m=21; v=concat([1, 6, 27], vector(m-3)); for(n=4, m, v[n]=6*v[n-1]-8*v[n-2]); v}
    
  • Sage
    [1]+[3*(5*4^n - 2*2^n)/8 for n in (1..30)] # G. C. Greubel, Dec 02 2021

Formula

a(n) = 3*(5*4^n - 2*2^n)/8 for n > 0.
G.f.: (1-x)*(1+x)/((1-2*x)*(1-4*x)).
E.g.f.: (1/8)*(-1 - 6*exp(2*x) + 15*exp(4*x)). - G. C. Greubel, Dec 02 2021

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)

A214630 a(n) is the reduced numerator of 1/4 - 1/A109043(n)^2 = (1 - 1/A026741(n)^2)/4.

Original entry on oeis.org

-1, 0, 0, 2, 3, 6, 2, 12, 15, 20, 6, 30, 35, 42, 12, 56, 63, 72, 20, 90, 99, 110, 30, 132, 143, 156, 42, 182, 195, 210, 56, 240, 255, 272, 72, 306, 323, 342, 90, 380, 399, 420, 110, 462, 483, 506, 132, 552, 575, 600, 156
Offset: 0

Views

Author

Paul Curtz, Jul 23 2012

Keywords

Comments

The unreduced fractions are -1/0, 0/4, 0/1, 8/36, 3/16, 24/100, 2/9, 48/196, 15/64, 80/324, 6/25, ... = c(n)/A061038(n), say.
Note that c(n)=A061037(n) + (period of length 2: repeat 0, 3).
c(n) is a permutation of A198442(n). The corresponding ranks are (the 0's have been swapped for convenience) 0,2,1,6,4,10,... = A145979(n-2).
Define the following sequences, satisfying the recurrence a(n) = 2*a(n-4) - a(n-8),
e(n) = -1, 0, 0, 2, 1, 4, 1, 6, 3, 8, 2, 10, 5, ... (after -1, a permutation of A004526(n) or mix A026741(n-1), 2*n),
f(n) = 1, 2, 1, 4, 3, 6, 2, 8, 5, 10, 3, 12, 7, ..., (another permutation of A004526(n+2) or mix A026741(n+1), 2*n+2).
f(n) - e(n) = periodic of period length 4: repeat 2, 2, 1, 2.
e(n) + f(n) = 0, 2, 1, 6, 4, 10, ... = A145979(n-2).
Then c(n) = e(n)*f(n).
Note that A061038(n) - 4*c(n) = periodic of period length 4: repeat 4, 4, 1, 4.
After division (by period 2: repeat 1, 4, A010685(n)), the reduced fractions of c(n) are -1/0, 0/1 ?, 0/4 ?, 2/9, 3/16, 6/25, 2/9, 12/49, 15/64, 20/81, 6/25, ... = a(n)/b(n).
Note that a(1+4*n) + a(2+4*n) + a(3+4*n) = 2,20,56,... = A002378(1+3*n) = A194767(3*n).
A061037(n-2) - a(n-2) = 0, -3, 0, -3, 0, 3, 0, 15, 0, 33, 0, 57, ... = Fip(n-2).
Fip(n-2)/3 = 0,-1,0,-1,0,1,0,5,0,11,0,19,0,29, .... Without 0's: A165900(n) (a Fibonacci polynomial); also -A110331(n+1) (Pell numbers).
g(n) = -1, 0, 0, 1, 1, 2, 1, 3, 3, 4, ... = mix A026741(n-1), n.
h(n) = 1, 1, 1, 2, 3, 3, 2, 4, 5, 5, ... = mix A026741(n+1), n+1.
h(n) - g(n) = (period 2: repeat 2, 1, 1, 1 = A177704(n-1)).
k(n) = 1, 1, 0, 2, 3, 3, 1, 4, 5, 5, ... = mix A174239(n), n+1.
l(n) = -1, 0, 1, 1, 1, 2, 2, 3, 3, 4, ... .
k(n) - l(n) = period 4: repeat 2, 1, -1, 1.
2) By the second formula in the definition, we take first 1 - 1/A026741(n)^2.
Hence, using a convention for the first fraction, -1/0, 0/1, 0/1, 8/9, 3/4, 24/25, 8/9, 48/49, 15/16, 80/81, 24/25, ... = (A005563(n-1) - A033996(n))/A168077(n) = q(n)/A168077(n).
For a(n), we divide by 4.
Note that A214297 is the reduced numerator of 1/4 - 1/A061038(n).
Note also that A168077(n) = A026741(n)^2.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3))); // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{-1,0,0,2,3,6,2,12,15,20,6,30},60] (* Harvey P. Dale, Jul 01 2019 *)
  • PARI
    Vec(-(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((x-1)^3*(x+ 1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jan 22 2015
    

Formula

a(4*n) = 4*n^2-1 = (2*n-1)*(2*n+1), a(2*n+1) = a(4*n+2) = n(n+1).
a(n)= A198442(n)/(period of length 4: repeat 1,1,4,1=A010121(n+2)).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). Is this the shortest possible recurrence? See A214297.
a(n+2) - a(n-2) = 0, 2, 4, 6, 2, 10, 12, 14, 4, ... = 2*A214392(n). a(-2)=a(-1)=0=a(1)=a(2).
a(n+4) - a(n-4) = 0, 4, 2, 12, 16, 20, 6, 28, 32, 36,... = 2*A188167(n). a(-4)=3=a(4), a(-3)=2=a(3).
a(n) = g(n) * h(n).
a(n) = k(n) * l(n).
G.f.: -(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, Jan 22 2015
From Luce ETIENNE, Apr 08 2017: (Start)
a(n) = (13*n^2-28-3*(n^2+4)*(-1)^n+3*(n^2-4)*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((2*n+1-(-1)^n)/4)))/64.
a(n) = (13*n^2-28-3*(n^2+4)*cos(n*Pi)+6*(n^2-4)*cos(n*Pi/2))/64. (End)

Extensions

Edited by N. J. A. Sloane, Aug 04 2012

A266973 a(n) = 4^n mod 17.

Original entry on oeis.org

1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16, 13, 1, 4, 16
Offset: 0

Views

Author

Vincenzo Librandi, Apr 06 2016

Keywords

Comments

Period 4: repeat [1, 4, 16, 13].

Crossrefs

Cf. similar sequences of the type 4^n mod p, where p is a prime: A010685 (5), A153727 (7), A168429 (11), A168430 (13), this sequence (17), A187532 (19).

Programs

  • Magma
    [Modexp(4, n, 17): n in [0..100]];
  • Maple
    A266973:=n->power(4,n) mod 17: seq(A266973(n), n=0..100); # Wesley Ivan Hurt, Jun 29 2016
  • Mathematica
    PowerMod[4, Range[0, 100], 17]

Formula

G.f.: (1+4*x+16*x^2+13*x^3)/(1-x^4).
a(n) = a(n-4) for n>3.
From Wesley Ivan Hurt, Jun 29 2016: (Start)
a(n) = (34 - 3*(5 + 3*I)*I^(-n) - 3*(5 - 3*I)*I^n)/4 where I=sqrt(-1).
a(n) = (17 - 15*cos(n*Pi/2) - 9*sin(n*Pi/2))/2. (End)
Previous Showing 21-26 of 26 results.