cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A104772 If n<=2 then n else (if n is odd then 2*a(n+1) else p*q, where n=p+q, p<=q, primes).

Original entry on oeis.org

1, 2, 8, 4, 18, 9, 30, 15, 42, 21, 70, 35, 66, 33, 78, 39, 130, 65, 102, 51, 114, 57, 190, 95, 138, 69, 230, 115, 322, 161, 174, 87, 186, 93, 310, 155, 434, 217, 222, 111, 370, 185, 246, 123, 258, 129, 430, 215, 282, 141, 470, 235, 658, 329, 318, 159, 530, 265, 742
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 24 2005

Keywords

Comments

Encoding of positive integers based on the Goldbach conjecture, see A104774 for decoding: A104774(A104772(n))=n;
a(n - n mod 2) = (2^(1 + n mod 2)) * A020481(floor(n/2))*A020482(floor(n/2));
for numbers greater than 4: a(even) = odd and a(odd) = even;
A001222(a(n)) = A010693(n) for n>2;
a(a(n)) = A104773(n).

Crossrefs

Formula

For k>1: a(2*k)=A020481(k)*A020482(k) and a(2*k-1)=2*a(2*k).

A176020 Decimal expansion of (3+sqrt(15))/3.

Original entry on oeis.org

2, 2, 9, 0, 9, 9, 4, 4, 4, 8, 7, 3, 5, 8, 0, 5, 6, 2, 8, 3, 9, 3, 0, 8, 8, 4, 6, 6, 5, 9, 4, 1, 3, 3, 2, 0, 3, 6, 1, 0, 9, 7, 3, 9, 0, 1, 7, 6, 3, 8, 6, 3, 6, 0, 8, 8, 6, 2, 5, 2, 4, 5, 8, 8, 7, 0, 4, 4, 9, 4, 3, 6, 3, 9, 7, 8, 9, 9, 3, 0, 1, 1, 1, 7, 3, 0, 9, 5, 7, 9, 2, 2, 8, 6, 2, 2, 4, 5, 0, 5, 9, 7, 2, 1, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(15))/3 is A010693.
a(n) = A020817(n-1) for n > 1; a(1) = 2.

Examples

			(3+sqrt(15))/3 = 2.29099444873580562839...
		

Crossrefs

Cf. A010472 (decimal expansion of sqrt(15)), A176016 (decimal expansion of (3+sqrt(15))/6), A010693 (repeat 2, 3), A020817 (decimal expansion of 1/sqrt(60)).

Programs

  • Mathematica
    RealDigits[(3+Sqrt[15])/3,10,120][[1]] (* Harvey P. Dale, May 20 2013 *)

A029863 Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), ... = 2 3 2 3 2 3 2 3 ....

Original entry on oeis.org

1, 2, 6, 12, 27, 50, 98, 172, 310, 522, 888, 1444, 2357, 3724, 5882, 9072, 13957, 21082, 31732, 47072, 69545, 101540, 147620, 212516, 304631, 433054, 613030, 861616, 1206089, 1677766, 2324844, 3203748, 4398602, 6009390, 8181250
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are 2 kinds of odd parts and 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018

Examples

			G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 27*x^4 + 50*x^5 + 98*x^6 + 172*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 20 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A)^2 * eta(x^2 + A)), n))};

Formula

Euler transform of period 2 sequence [2, 3, ...].
a(n) ~ 5 * exp(sqrt(5*n/3)*Pi) / (48 * n^(3/2)). - Vaclav Kotesovec, Sep 20 2015
G.f.: Product_{k >= 1} 1/(1-x^k)^A010693(k-1). - Georg Fischer, Dec 10 2020

A368227 Square array read by ascending antidiagonals: row n is the trajectory of n under the A006369 map.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 5, 3, 3, 1, 0, 6, 7, 7, 2, 2, 1, 0, 7, 4, 9, 9, 3, 3, 1, 0, 8, 9, 5, 6, 6, 2, 2, 1, 0, 9, 11, 6, 7, 4, 4, 3, 3, 1, 0, 10, 6, 15, 4, 9, 5, 5, 2, 2, 1, 0, 11, 13, 4, 10, 5, 6, 7, 7, 3, 3, 1, 0, 12, 15, 17, 5, 13, 7, 4, 9, 9, 2, 2, 1, 0
Offset: 0

Views

Author

Paolo Xausa, Dec 18 2023

Keywords

Examples

			Array begins:
  [ 0]   0,  0,  0,  0,  0,  0,  0,  0,  0,   0,  0, ... = A000004
  [ 1]   1,  1,  1,  1,  1,  1,  1,  1,  1,   1,  1, ... = A000012
  [ 2]   2,  3,  2,  3,  2,  3,  2,  3,  2,   3,  2, ... = A010693
  [ 3]   3,  2,  3,  2,  3,  2,  3,  2,  3,   2,  3, ... = A176059
  [ 4]   4,  5,  7,  9,  6,  4,  5,  7,  9,   6,  4, ... = A094328
  [ 5]   5,  7,  9,  6,  4,  5,  7,  9,  6,   4,  5, ... = A094328 (shifted)
  [ 6]   6,  4,  5,  7,  9,  6,  4,  5,  7,   9,  6, ... = A094328 (shifted)
  [ 7]   7,  9,  6,  4,  5,  7,  9,  6,  4,   5,  7, ... = A094328 (shifted)
  [ 8]   8, 11, 15, 10, 13, 17, 23, 31, 41,  55, 73, ... = A028394
  [ 9]   9,  6,  4,  5,  7,  9,  6,  4,  5,   7,  9, ... = A094328 (shifted)
  [10]  10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, ... = A028394 (shifted)
  ...    |   |   |
      A001477|A168222
          A006369
		

Crossrefs

Programs

  • Mathematica
    A006369[n_]:=If[Divisible[n,3],2n/3,Round[4n/3]];
    A368227list[dmax_]:=With[{a=Reverse[Table[NestList[A006369,n-1,dmax-n],{n,dmax}]]},Array[Diagonal[a,#]&,dmax,1-dmax]];
    A368227list[15] (* Generates 15 antidiagonals *)

A242112 a(n) = floor((2*n+6)/(5-(-1)^n)).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 6, 9, 6, 10, 7, 11, 8, 12, 8, 13, 9, 14, 10, 15, 10, 16, 11, 17, 12, 18, 12, 19, 13, 20, 14, 21, 14, 22, 15, 23, 16, 24, 16, 25, 17, 26, 18, 27, 18, 28, 19, 29, 20, 30, 20, 31, 21, 32, 22, 33, 22, 34, 23, 35, 24, 36
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 21 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor((2*n+6)/(5-(-1)^n)) : n in [0..100]];
    
  • Magma
    [IsEven(n) select 1+n/2 else 1+Floor(n/3): n in [0..80]]; // Bruno Berselli, Aug 22 2014
  • Maple
    A242112:=n->floor((2*n+6)/(5-(-1)^n)): seq(A242112(n), n=0..100);
  • Mathematica
    Table[Floor[(2 n + 6)/(5 - (-1)^n)], {n, 0, 100}]
    LinearRecurrence[{0,1,0,0,0,1,0,-1},{1,1,2,2,3,2,4,3},80] (* Harvey P. Dale, Oct 24 2017 *)

Formula

a(n) = a(n-2) + a(n-6) - a(n-8).
a(n) = ( n+3 - A093718(n) ) / A010693(n).
From Robert Israel, Aug 22 2014: (Start)
a(n) = sqrt(3)/18*(sin(2*n*Pi/3)+sin(n*Pi/3)) + 1/6*(cos(2*n*Pi/3)-cos(n*Pi/3)) + (-1)^n*(2+n)/12 + 5*(n+2)/12.
G.f.: (1 + x + x^2 + x^3 + x^4)/(1 - x^2 - x^6 + x^8). (End)
a(n) = 1 + n/2 if n is even, otherwise a(n) = 1 + floor(n/3). - Bruno Berselli, Aug 22 2014

A075328 Difference between n-th pair in A075325.

Original entry on oeis.org

2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155
Offset: 0

Views

Author

Amarnath Murthy, Sep 18 2002

Keywords

Comments

Empirically the partial sums of A010693 (i.e., 2, 3 repeated). - Sean A. Irvine, Jul 12 2022

Crossrefs

Extensions

More terms from David Wasserman, Jan 16 2005

A135537 Period 4: repeat [7, 5, 2, 4].

Original entry on oeis.org

7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5
Offset: 0

Views

Author

Paul Curtz, Feb 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A135536(n) mod 9.
O.g.f.: ((x+5)/(x^2+1)+9*(1-x))/2. a(n) = ((-1)^floor(n/2) * A010686(n+1) + 9)/2. - R. J. Mathar, Feb 23 2008
From Wesley Ivan Hurt, Jul 08 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2, a(n) = a(n-4) for n>3.
a(n) = A021408(n) for n>1. (End)
Previous Showing 21-27 of 27 results.