A215943
Number of ways to place k non-attacking bishops on an n x n toroidal chessboard, summed over all k >= 0.
Original entry on oeis.org
2, 9, 34, 289, 1546, 19321, 130922, 2169729, 17572114, 364466281, 3405357682, 85143154849, 896324308634, 26309790300249, 306827170866106, 10366719612433921, 132240988644215842, 5064730099043043529, 69974827707903049154, 3000912883089564050721
Offset: 1
-
Table[Sum[If[EvenQ[n],2^k*k!*Sum[Binomial[n/2,i]^2*Binomial[n/2,k-i]^2/Binomial[k,i],{i,0,k}],Binomial[n,k]^2*k!],{k,0,n}],{n,1,25}]
A258213
Number of permutations of {1,2,3,...,n} such that no even numbers are adjacent.
Original entry on oeis.org
1, 1, 2, 6, 12, 72, 144, 1440, 2880, 43200, 86400, 1814400, 3628800, 101606400, 203212800, 7315660800, 14631321600, 658409472000, 1316818944000, 72425041920000, 144850083840000, 9560105533440000, 19120211066880000, 1491376463216640000, 2982752926433280000
Offset: 0
-
a:= n-> (m-> m!^2*(m+1))(iquo(n+1, 2, 'r'))/(2-r):
seq(a(n), n=0..24); # Alois P. Heinz, Feb 14 2024
-
T(n,k) = n!/(n-k)!; \\ A008279
a(n) = ceil(n/2)!*T(ceil(n/2)+1, n\2); \\ Michel Marcus, Nov 24 2022
A369597
a(n) is the number of reduced stable marriage problem instances of order 3 that generate n possible stable matchings.
Original entry on oeis.org
Cf.
A351409 (number of reduced instances of order n).
Cf.
A010790 (reduction factor for order n).
A084259
a(n) = n! * (n+1)! * (n+2)! * (n+3).
Original entry on oeis.org
6, 48, 1440, 103680, 14515200, 3483648000, 1316818944000, 737418608640000, 584035538042880000, 630758381086310400000, 901984484953423872000000, 1666867328193927315456000000, 3900469547973789918167040000000
Offset: 0
A176049
Primes of the form n!*(n+1)!*(n+2)! - 1 or n!*(n+1)!*(n+2)! + 1.
Original entry on oeis.org
3, 11, 13, 2073601, 146313215999, 52563198423859200001, 709885457731229765106401279999999, 15120395453651827088974983182763034097693491200000000001
Offset: 1
a(2) = 11 because 1!*(1+1)!*(1+2)! - 1 = 11 is prime. a(4) = 2073601 because 4!*(4+1)!*(4+2)! + 1 = 2073601 is prime. a(7) because 13!*(13+1)!*(13+2)! - 1 = 709885457731229765106401279999999 is prime.
-
Select[Union[Flatten[Times@@#+{1,-1}&/@Partition[Range[0,30]!,3,1]]], PrimeQ] (* Harvey P. Dale, Jan 05 2013 *)
A258216
Number of permutations of {1,2,3,...,n} such that no multiples of 3 are adjacent.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 480, 3600, 30240, 151200, 1693440, 20321280, 121927680, 1828915200, 28740096000, 201180672000, 3793692672000, 73977007104000, 591816056832000, 13463815292928000, 314155690168320000
Offset: 0
-
Table[Factorial[n-Floor[n/3]]*FactorialPower[n+1-Floor[n/3],Floor[n/3],1], {n, 0, 20}]
A273935
Number of ways to arrange n women and n men around a circular table so that they can be divided into n nonintersecting pairs of 1 woman and 1 man sitting side-by-side.
Original entry on oeis.org
1, 1, 6, 84, 2160, 89280, 5443200, 460857600, 51819264000, 7476605337600, 1347105779712000, 296508121620480000, 78297264318873600000, 24431729220414996480000, 8893692297263669575680000, 3735464765667589501747200000, 1793050447716486548029440000000
Offset: 0
For n = 2: Represent the women and men as the numbers 1,2,3,4, where 1,3 are women and 2,4 are men. Then all 6 arrangements around the circular table are valid (parentheses included to emphasize a valid pairing, including wraparound):
(1,2),(3,4);
(1,2),(4,3);
1),(3,2),(4;
1),(3,4),(2;
(1,4),(2,3);
(1,4),(3,2).
A335997
Triangle read by rows: T(n,k) = Product_{i=n-k+1..n} i! for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 6, 12, 12, 1, 24, 144, 288, 288, 1, 120, 2880, 17280, 34560, 34560, 1, 720, 86400, 2073600, 12441600, 24883200, 24883200, 1, 5040, 3628800, 435456000, 10450944000, 62705664000, 125411328000, 125411328000
Offset: 0
The triangle starts:
n\k : 0 1 2 3 4 5 6
============================================================
0 : 1
1 : 1 1
2 : 1 2 2
3 : 1 6 12 12
4 : 1 24 144 288 288
5 : 1 120 2880 17280 34560 34560
6 : 1 720 86400 2073600 12441600 24883200 24883200
etc.
-
T[n_, k_] := Product[i!, {i, n - k + 1, n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 08 2020 *)
A362588
Triangle read by rows, T(n, k) = RisingFactorial(n - k, k) * FallingFactorial(n, k).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 12, 0, 1, 12, 72, 144, 0, 1, 20, 240, 1440, 2880, 0, 1, 30, 600, 7200, 43200, 86400, 0, 1, 42, 1260, 25200, 302400, 1814400, 3628800, 0, 1, 56, 2352, 70560, 1411200, 16934400, 101606400, 203212800, 0
Offset: 0
Table T(n, k) begins:
[0] 1;
[1] 1, 0;
[2] 1, 2, 0;
[3] 1, 6, 12, 0;
[4] 1, 12, 72, 144, 0;
[5] 1, 20, 240, 1440, 2880, 0;
[6] 1, 30, 600, 7200, 43200, 86400, 0;
[7] 1, 42, 1260, 25200, 302400, 1814400, 3628800, 0;
[8] 1, 56, 2352, 70560, 1411200, 16934400, 101606400, 203212800, 0;
-
T := (n, k) -> (-1)^k*pochhammer(n - k, k)*pochhammer(-n, k):
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
A368787
a(n) = (n+1) * (n!)^2 * Sum_{k=1..n} 1/((k+1) * (k!)^2).
Original entry on oeis.org
0, 1, 7, 85, 1701, 51031, 2143303, 120024969, 8641797769, 777761799211, 85553797913211, 11293101324543853, 1761723806628841069, 320633732806449074559, 67333083889354305657391, 16159940133445033357773841, 4395503716297049073314484753
Offset: 0
Comments