cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A208270 Primes containing a digit 1.

Original entry on oeis.org

11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 241, 251, 271, 281, 311, 313, 317, 331, 401, 419, 421, 431, 461, 491, 521, 541, 571, 601, 613, 617, 619, 631, 641, 661
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2012

Keywords

Comments

Subsequence of A011531, A062634, A092911 and A092912.
Supersequence of A106101, A045707 and A030430.
Complement of A208271 with respect to A011531.

Crossrefs

Cf. A208271 (nonprimes containing a digit 1), A011531 (numbers containing a digit 1).
Complement of A038603 in A000040. - M. F. Hasler, Mar 05 2012

Programs

  • Magma
    [p: p in PrimesUpTo(400) | 1 in Intseq(p)]; // Vincenzo Librandi, Apr 29 2019
  • Mathematica
    Select[Prime[Range[124]], MemberQ[IntegerDigits[#], 1] &](* Jayanta Basu, Apr 01 2013 *)
    Select[Prime[Range[200]],DigitCount[#,10,1]>0&] (* Harvey P. Dale, Dec 15 2020 *)
  • PARI
    forprime(p=2,1e3,s=vecsort(eval(Vec(Str(p))),,8);if(s[1]==1||(s[1]==0&&s[2]==1),print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012
    
  • PARI
    is_A208270(n)=isprime(n)&setsearch(Set(Vec(Str(n))),1) \\ M. F. Hasler, Mar 05 2012
    

Formula

a(n) ~ n log n since the sequence contains almost all primes. - Charles R Greathouse IV, Mar 04 2012

A293873 Numbers having '13' as substring of their digits.

Original entry on oeis.org

13, 113, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 213, 313, 413, 513, 613, 713, 813, 913, 1013, 1113, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1213, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 13 of A292690 and A293869. A121033 is the subsequence of multiples of 13.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1350],SequenceCount[IntegerDigits[#],{1,3}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is_A293873 = has(n, p=13, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293880 Numbers having '20' as substring of their digits.

Original entry on oeis.org

20, 120, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1220, 1320, 1420, 1520, 1620, 1720, 1820, 1920, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 20 of A292690 and A293869. A121040 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2100],SequenceCount[IntegerDigits[#],{2,0}]>0&] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    is_A293880 = has(n, p=20, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A062634 Numbers k such that every divisor of k contains the digit 1.

Original entry on oeis.org

1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 221, 241, 251, 271, 281, 311, 313, 317, 331, 341, 361, 401, 419, 421, 431, 451, 461, 491, 521
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

First composite term is 121. All powers of 11 are in the sequence. - Alonso del Arte, Sep 29 2013

Examples

			143 has divisors 1, 11, 13 and 143, all of which contain the digit 1.
		

Crossrefs

Cf. A027750, subsequence of A011531; A206159 and A208270 are subsequences.
Cf. A001020 (powers of 11).

Programs

  • Haskell
    a062634 n = a062634_list !! (n-1)
    a062634_list = filter
       (and . map ((elem '1') . show) . a027750_row) a011531_list
    -- Reinhard Zumkeller, Feb 05 2012
    
  • Maple
    q:= n-> andmap(x-> 1 in convert(x, base, 10), numtheory[divisors](n)):
    select(q, [$1..1000])[];  # Alois P. Heinz, May 09 2022
  • Mathematica
    fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 525], fQ[#, 1] &] (* Robert G. Wilson v, Jun 11 2014 *)
  • PARI
    isok(m) = fordiv(m, d, if (! #select(x->(x==1), digits(d)), return(0))); return(1); \\ Michel Marcus, May 09 2022

Extensions

Offset corrected by Reinhard Zumkeller, Feb 05 2012

A069715 GCD of digits of n is 1.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 35, 37, 38, 41, 43, 45, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 67, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 87, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108
Offset: 1

Views

Author

Labos Elemer, Apr 02 2002

Keywords

Examples

			All numbers with at least one digit equal to 1 are here.
		

Crossrefs

Cf. A011531 (subsequence), A240913 (subsequence).

Programs

  • Haskell
    a069715 n = a069715_list !! (n-1)
    a069715_list = filter ((== 1) . a052423) [1..]
    -- Reinhard Zumkeller, Apr 14 2014
    
  • Mathematica
    Do[s=Apply[GCD, IntegerDigits[n]]; If[Equal[s, 1], Print[n]], {n, 1, 256}]
  • PARI
    is(n)=gcd(digits(n))==1 \\ Charles R Greathouse IV, Nov 01 2014

Formula

A052423(a(n)) = 1. - Reinhard Zumkeller, Apr 14 2014
a(n) ~ n. In fact a(n) = n + O(n^(log 5/log 10)). - Charles R Greathouse IV, Nov 01 2014

A121042 Smallest divisor of n that is also contained in the decimal representation of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 23, 2, 5, 2, 27, 2, 29, 3, 1, 2, 3, 34, 5, 3, 37, 38, 3, 4, 1, 2, 43, 4, 5, 46, 47, 4, 49, 5, 1, 2, 53, 54, 5, 56, 57, 58, 59, 6, 1, 2, 3, 4, 5, 6, 67, 68, 69, 7, 1, 2, 73, 74, 5, 76, 7, 78, 79, 8, 1, 2, 83, 4, 5, 86, 87, 8, 89, 9, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Comments

1 <= a(n) <= n;
a(A011531(n)) = 1; a(n) = n iff A121041(n) = 1.
a(n) = 1 for almost all n (measure 1). - Charles R Greathouse IV, Mar 31 2016

Examples

			a(48) = Min{4, 8, 48} = 4;
a(49) = Min{49} = 49;
a(120) = Min{1, 2, 12, 20, 120} = 1;
a(121) = Min{1} = 1.
		

Crossrefs

Cf. A011531, A027750, A121041, A383749 (fixed points).

Programs

  • Mathematica
    A121042[n_] := SelectFirst[Divisors[n], StringContainsQ[IntegerString[n], IntegerString[#]] &];
    Array[A121042, 100] (* Paolo Xausa, May 12 2025 *)
  • PARI
    substr(a,b)=a=digits(a);b=digits(b); for(i=0,#a-#b, for(j=1,#b, if(a[i+j]!=b[j], next(2))); return(1)); 0
    a(n)=fordiv(n,d, if(substr(n,d), return(d))) \\ Charles R Greathouse IV, Mar 31 2016

A175688 Numbers k with property that arithmetic mean of its digits is both an integer and one of the digits of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 102, 111, 120, 123, 132, 135, 147, 153, 159, 174, 195, 201, 204, 210, 213, 222, 231, 234, 240, 243, 246, 258, 264, 285, 306, 312, 315, 321, 324, 333, 342, 345, 351, 354, 357, 360, 369, 375, 396, 402
Offset: 1

Views

Author

Claudio Meller, Aug 09 2010

Keywords

Comments

Subsequence of A061383.
A180160(a(n)) = 0. - Reinhard Zumkeller, Aug 15 2010

Examples

			135 is in the list because (1+3+5)/3 = 3 and 3 is a digit of 135.
		

Crossrefs

Programs

  • Haskell
    a175688 n = a175688_list !! (n-1)
    a175688_list = filter f [0..] where
       f x = m == 0 && ("0123456789" !! avg) `elem` show x
             where (avg, m) = divMod (a007953 x) (a055642 x)
    -- Reinhard Zumkeller, Jun 18 2013
  • Mathematica
    idQ[n_]:=Module[{idn=IntegerDigits[n],m},m=Mean[idn];IntegerQ[m] && MemberQ[idn,m]]; Select[Range[0,500],idQ] (* Harvey P. Dale, Jun 10 2011 *)

Extensions

Edited by Reinhard Zumkeller, Aug 13 2010

A092911 Numbers all of whose divisors can be formed using their digits. Divisor digits are a subset of the digits of the number.

Original entry on oeis.org

1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 241, 251, 271, 281, 311, 313, 317, 331, 401, 419, 421, 431, 461, 491, 521, 541, 571
Offset: 1

Views

Author

Amarnath Murthy, Mar 14 2004

Keywords

Comments

All primes containing 1 are members.
Sequence is a subsequence of A011531. The first nonprime terms of the sequence are 1, 121, 125, 1207, 1255, 1379, 10201, 10379, 11009, 11209, 12419, 12709, 12755, ... - R. J. Mathar, Jul 26 2007

Examples

			131 is a term. 143 is not a term as the divisor 11 contains two 1's.
		

Crossrefs

Programs

  • Maple
    isA092911 := proc(n) local digs, digsleft,divs, d,i,j ; digs := convert(n,base,10) ; divs := numtheory[divisors](n) ; for i from 1 to nops(divs) do digsleft := digs ; d := convert(op(i,divs),base,10) ; for j in d do if member(j,digsleft,'jposit') then digsleft := subsop(jposit=NULL,digsleft) ; else RETURN(false) ; fi ; od ; od ; RETURN(true) ; end: for n from 1 to 600 do if isA092911(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jul 26 2007
  • Mathematica
    subQ[s1_, s2_] := AllTrue[Count[s1, #] & /@ (First /@ (t = Tally[s2])) - Last /@ t, # >= 0 &]; digQ[n1_, n2_] := subQ[IntegerDigits[n1], IntegerDigits[n2]]; seqQ[n_] := AllTrue[Most@Divisors[n], digQ[n, #] &]; Select[Range[600], seqQ] (* Amiram Eldar, Nov 12 2020 *)
  • Python
    from sympy import divisors
    from collections import Counter
    def ok(n):
      ncounts = Counter(str(n))
      for d in divisors(n)[:-1]:
        divcounts = Counter(str(d))
        if any(ncounts[c] < divcounts[c] for c in divcounts): return False
      return True
    print(list(filter(ok, range(1, 630)))) # Michael S. Branicky, May 08 2021

Extensions

Corrected and extended by R. J. Mathar, Jul 26 2007

A241146 Least number k such that k and n*k share at least one digit.

Original entry on oeis.org

1, 10, 5, 10, 5, 2, 5, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 9, 5, 10, 5, 2, 5, 6, 5, 5, 1, 10, 5, 10, 4, 2, 4, 10, 5, 10, 1, 10, 5, 3, 3, 2, 5, 8, 5, 5, 1, 10, 5, 7, 5, 2, 5, 10, 5, 2, 1, 2, 2, 2, 5, 2, 5, 7, 5, 5, 1, 10, 5, 10, 5, 2, 3, 3, 3, 10, 1, 7, 5, 10, 4, 2, 4, 9, 5, 5, 1, 10, 5, 6, 5, 2, 5, 8, 5, 1
Offset: 1

Views

Author

Robert G. Wilson v, Apr 16 2014

Keywords

Comments

\ 10^3...10^4....10^5.....10^6......10^7.......10^8........10^9
k\
.1..272...3440...40952...468560...5217032...56953280...612579512
.2..149...1613...16837...171325...1710773...16837421...163825573
.3...87...1091...12038...124060...1225493...11762254...110573419
.4...62....710....7196....68280....621670....5502346....47710882
.5..248...1914...14674...111846....848318....6407338....48220222
.6...26....246....2087....16749....129768.....980911.....7280424
.7...36....323....2587....19368....138838.....966609.....6591845
.8...20....156....1095.....7199.....45386.....277985.....1667513
.9...22....162....1028.....6055.....34178.....187661.....1010240
10...78....345....1506.....6558.....28544.....124195......540370
The sequence of numbers whose first digit is k:
.1: 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 100, …, . A011531?
.2: 6, 26, 36, 46, 56, 60, 62, 63, 64, 66, 76, 86, 96, 206, 226, 236, 246, 256, 260, 262, …, .
.3: 44, 45, 77, 78, 79, 244, 245, 277, 278, 279, 344, 345, 377, 378, 379, 434, 435, 437, 438, …, .
.4: 35, 37, 85, 87, 235, 237, 285, 287, 335, 337, 350, 352, 353, 354, 355, 357, 358, 359, 365, …, .
.5: 3, 5, 7, 9, 23, 25, 27, 29, 30, 33, 39, 43, 47, 49, 50, 53, 55, 57, 59, 65, 67, 69, 70, 73, …, .
.6: 28, 94, 228, 268, 272, 274, 280, 282, 294, 328, 394, 428, 494, 528, 594, 694, 728, 828, 894, …, .
.7: 54, 68, 82, 248, 252, 254, 382, 388, 392, 398, 468, 482, 532, 534, 538, 540, 542, 554, 568, …, .
.8: 48, 98, 232, 234, 298, 348, 480, 484, 498, 548, 598, 698, 732, 734, 748, 848, 898, 980, 984, …, .
.9: 22, 88, 220, 222, 288, 322, 324, 332, 422, 488, 522, 552, 588, 658, 688, 722, 880, 884, 888, …, .
10: 2, 4, 8, 20, 24, 32, 34, 38, 40, 42, 52, 58, 72, 74, 80, 84, 92, 200, 202, 204, 208, 224, …, .

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ Intersection[ IntegerDigits[k], IntegerDigits[n*k]] == {}, k++]; k]; Array[f, 100]

Formula

If a(n) = k so does a(10n).

A206159 Numbers needing at most two digits to write all positive divisors in decimal representation.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 22, 31, 33, 41, 55, 61, 71, 77, 101, 113, 121, 131, 151, 181, 191, 199, 211, 311, 313, 331, 661, 811, 881, 911, 919, 991, 1111, 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 3313, 3331, 4111, 4441, 6661, 7177, 7717, 8111, 9199, 10111, 11113
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2012

Keywords

Comments

The terms of A203897 having all divisors in A020449 (in particular, the first 1022 terms) are a subsequence. - M. F. Hasler, May 02 2022
Since 1 and the term itself are divisors, one must only check repdigits and those containing only 1 and another digit. - Michael S. Branicky, May 02 2022

Crossrefs

Cf. A203897 (an "almost subsequence"), A020449 (primes with only digits 0 & 1), A095048 (number of distinct digits in divisors(n)).

Programs

  • Mathematica
    Select[Range[12000],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]<3&] (* Harvey P. Dale, May 03 2022 *)
  • PARI
    select( {is_A206159(n)=#Set(concat([digits(d)|d<-divisors(n)]))<3}, [1..10^4]) \\ M. F. Hasler, May 02 2022
  • Python
    from sympy import divisors
    def ok(n):
        digits_used = set()
        for d in divisors(n, generator=True):
            digits_used |= set(str(d))
            if len(digits_used) > 2: return False
        return True
    print([k for k in range(1, 9000) if ok(k)]) # Michael S. Branicky, May 02 2022
    

Formula

A095048(a(n)) <= 2.

Extensions

Terms corrected by Harvey P. Dale, May 02 2022
Edited by N. J. A. Sloane, May 02 2022
Previous Showing 41-50 of 73 results. Next