cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A257219 Numbers that have at least one divisor containing the digit 2 in base 10.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 2.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.
All even numbers and all numbers which have a digit "2" themselves are trivially in this sequence. The first terms not of this form are the odd multiples of odd numbers between 21 and 29: { 63 = 3*21, 69 = 3*23, 75 = 3*25, 81 = 3*27, 87 = 3*29, 105 = 5*21, 115 = 5*23, 135 = 5*27, 145 = 5*29, ...}. - M. F. Hasler, Apr 22 2015
A011532 (numbers that contain a 2) is a subsequence. - Michel Marcus, May 19 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 2.
In the same way all even numbers have the divisor 2 and thus are in this sequence; numbers N in { 20,...,29, 120,...,129, 200,...,299 } have the digit 2 in N which is divisor of itself. - _M. F. Hasler_, Apr 22 2015
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [2] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 2] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
  • PARI
    is(n)=!bittest(n,0)||setsearch(Set(digits(n)),2)||fordiv(n,d,setsearch(Set(digits(d)),2)&&return(1)) \\ M. F. Hasler, Apr 22 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 22 2015

A175688 Numbers k with property that arithmetic mean of its digits is both an integer and one of the digits of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 102, 111, 120, 123, 132, 135, 147, 153, 159, 174, 195, 201, 204, 210, 213, 222, 231, 234, 240, 243, 246, 258, 264, 285, 306, 312, 315, 321, 324, 333, 342, 345, 351, 354, 357, 360, 369, 375, 396, 402
Offset: 1

Views

Author

Claudio Meller, Aug 09 2010

Keywords

Comments

Subsequence of A061383.
A180160(a(n)) = 0. - Reinhard Zumkeller, Aug 15 2010

Examples

			135 is in the list because (1+3+5)/3 = 3 and 3 is a digit of 135.
		

Crossrefs

Programs

  • Haskell
    a175688 n = a175688_list !! (n-1)
    a175688_list = filter f [0..] where
       f x = m == 0 && ("0123456789" !! avg) `elem` show x
             where (avg, m) = divMod (a007953 x) (a055642 x)
    -- Reinhard Zumkeller, Jun 18 2013
  • Mathematica
    idQ[n_]:=Module[{idn=IntegerDigits[n],m},m=Mean[idn];IntegerQ[m] && MemberQ[idn,m]]; Select[Range[0,500],idQ] (* Harvey P. Dale, Jun 10 2011 *)

Extensions

Edited by Reinhard Zumkeller, Aug 13 2010

A043498 Numbers having two 2's in base 10.

Original entry on oeis.org

22, 122, 202, 212, 220, 221, 223, 224, 225, 226, 227, 228, 229, 232, 242, 252, 262, 272, 282, 292, 322, 422, 522, 622, 722, 822, 922, 1022, 1122, 1202, 1212, 1220, 1221, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1232, 1242, 1252
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011532.

Programs

  • Maple
    q:= n-> numboccur(2, convert(n, base, 10))=2:
    select(q, [$2..2222])[];  # Alois P. Heinz, Mar 15 2020
  • Mathematica
    Select[Range[5000], DigitCount[#, 10, 2] == 2 &] (* Vincenzo Librandi, Nov 20 2015 *)
  • PARI
    c(k, d, b) = {my(c=0, f); while (k>b-1, f=k-b*(k\b); if (f==d, c++); k\=b); if (k==d, c++); return(c)}
    for(n=0, 2000, if(c(n, 2, 10)==2, print1(n, ", "))) \\ Altug Alkan, Nov 20 2015

A381087 The smallest positive integer that produces a product that contains the digit 2 when multiplied by 2 a total of n times.

Original entry on oeis.org

2, 1, 6, 31, 64, 64, 331, 331, 814, 1607, 4107, 5129, 5129, 5129, 10283, 12819, 16163, 16163, 16163, 40108, 40108, 40108, 40108, 40108, 40108, 80313, 80313, 80313, 80313, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153, 100153
Offset: 0

Views

Author

Scott R. Shannon, Feb 13 2025

Keywords

Comments

The last known distinct term is a(148) = 3130008; all subsequent terms studied also equal 3130008, and it is plausible, although unproven, that this is the last distinct value as n -> infinity.

Examples

			a(2) = 6 as 6*2 = 12 and 12*2 = 24, and the two products contain the digit 2.
a(8) = 814 as 814*2 = 1628, 1628*2 = 3256, 3256*2 = 6512, 6512*2 = 13024, 13024*2 = 26048, 26048*2 = 52096, 52096*2 = 104192, 104192*2 = 208384, and the eight products contain the digit 2.
		

Crossrefs

Cf. A378138 (distinct values), A381183, A011532.

A381183 a(n) = the smallest positive integer that produces a product that contains the digit 2 when multiplied by 2 at most n times, and where a further multiplication by 2 produces a number that does not contain the digit 2. Set a(n) = -1 if no such number exists.

Original entry on oeis.org

2, 1, 6, 31, 128, 64, 516, 331, 814, 1607, 4107, 10158, 10258, 5129, 10283, 12819, 25633, 28141, 16163, 51404, 80134, 80864, 40633, 80216, 40108, 128129, 250627, 160626, 80313, 125641, 208141, 383814, 391628, 195814, 156766, 196314, 391563, 490641, 806166, 785313, 628222, 314111, 625322, 312661, 1563305, 2630104, 1315052, 657526, 328763, 1643815
Offset: 0

Views

Author

Keywords

Comments

It is plausible that there are many terms, likely almost all terms, such that a(n) = -1, since the products as n increases become so large it is almost certain that subsequent products also contain the digit 2. It is therefore extremely unlikely that the series of products will terminate for very large values of n. See A381087.
For all starting values up to 10^9 the lowest undetermined term is a(263), while the largest determined term is a(370) = 357131067. The largest term value in this range is a(301) = 957107659.

Examples

			a(2) = 6 as 6*2 = 12, 12*2 = 24, 24*2 = 48, and the first two products contain the digit 2 while the third does not.
a(6) = 516 as 516*2 = 1032, 1032*2 = 2064, 2064*2 = 4128, 4128*2 = 8256, 8256*2 = 16512, 16512*2 = 33024, 33024*2 = 66048, and the first six products contain the digit 2 while the seventh does not.
		

Crossrefs

A043499 Numbers having three 2's in base 10.

Original entry on oeis.org

222, 1222, 2022, 2122, 2202, 2212, 2220, 2221, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2232, 2242, 2252, 2262, 2272, 2282, 2292, 2322, 2422, 2522, 2622, 2722, 2822, 2922, 3222, 4222, 5222, 6222, 7222, 8222, 9222, 10222, 11222, 12022, 12122, 12202, 12212
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011532.

Programs

  • Mathematica
    Select[Range[13000],DigitCount[#,10,2]==3&] (* Harvey P. Dale, Aug 23 2021 *)

A208273 Composite numbers containing a digit 2.

Original entry on oeis.org

12, 20, 21, 22, 24, 25, 26, 27, 28, 32, 42, 52, 62, 72, 82, 92, 102, 112, 120, 121, 122, 123, 124, 125, 126, 128, 129, 132, 142, 152, 162, 172, 182, 192, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2012

Keywords

Comments

Subsequence of A011532. Complement of A208272 with respect to A011532.

Crossrefs

Cf. A208272 (primes containing a digit 2), A011532 (numbers containing a digit 2).

Programs

  • Maple
    filter:= proc(n) not isprime(n) and member(2,convert(n,base,10)) end proc:
    select(filter, [$4..300]); # Robert Israel, Oct 09 2024
  • Mathematica
    Select[Range[300], ! PrimeQ[#] && MemberQ[IntegerDigits[#], 2] &] (* T. D. Noe, Mar 06 2012 *)
    Select[Range[300],CompositeQ[#]&&DigitCount[#,10,2]>0&] (* Harvey P. Dale, Sep 08 2024 *)

A378138 The distinct values, in order of appearance, of A381087.

Original entry on oeis.org

2, 1, 6, 31, 64, 331, 814, 1607, 4107, 5129, 10283, 12819, 16163, 40108, 80313, 100153, 256379, 1281895, 2571143, 3130008
Offset: 0

Views

Author

Scott R. Shannon, Feb 16 2025

Keywords

Comments

See A381087 for further details. It is plausible, although unproven, that 3130008 is the final term.

Crossrefs

A285470 Numbers k where "2" appears as the second digit of the decimal representation.

Original entry on oeis.org

12, 22, 32, 42, 52, 62, 72, 82, 92, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 620, 621, 622, 623, 624, 625, 626, 627
Offset: 1

Views

Author

Jamie Robert Creasey, Apr 19 2017

Keywords

Comments

To find a(n), concatenate the first digit of n with 2 and then the other digits (if any) from n. See example. - David A. Corneth, Jun 12 2017

Examples

			a(21) = 221, a(36) = 326.
As the first digit of 983 is 9, and the others are 83, a(983) = 9283. - _David A. Corneth_, Jun 12 2017
		

Crossrefs

Cf. A011532 (containing 2), A052404 (without 2), A217394 (starting with 2).

Programs

  • Maple
    seq(seq(seq(a*10^d + 2*10^(d-1)+c, c=0..10^(d-1)-1),a=1..9),d=1..2); # Robert Israel, Jun 12 2017
  • Mathematica
    Table[FromDigits@ Apply[Join, {{First@ #}, {2}, Rest@ #}] &@ IntegerDigits@ n, {n, 67}] (* Michael De Vlieger, Jun 12 2017 *)
    Select[Range[700],NumberDigit[#,IntegerLength[#]-2]==2&] (* Harvey P. Dale, Aug 15 2025 *)
  • PARI
    isok(n) = (n>9) && digits(n)[2] == 2; \\ Michel Marcus, Jun 12 2017
    
  • PARI
    a(n) = my(d = digits(n)); fromdigits(concat([d[1], [2], vector(#d-1, i, d[i+1])])) \\ David A. Corneth, Jun 12 2017
    
  • PARI
    nxt(n) = if(isok(n+1), n+1, d = digits(n); t = 9*10^(#d-2); if(d[1]==9,t*=3); n+=t++) \\ David A. Corneth, Jun 12 2017
    
  • Python
    def a(n): s = str(n); return int(s[0] + "2" + s[1:])
    print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Dec 22 2021

Formula

From Robert Israel, Jun 12 2017: (Start)
a(10*n+j) = 10*a(n)+j for 0<=j<=9 and n >= 1.
G.f. g(x) satisfies g(x) = 10*(1-x^10)*g(x^10)/(1-x) + (x + 2*x + ... + 9*x^9)*x^10/(1-x^10) + 12*x + 22*x^2 + ... + 92*x^9. (End)

A095790 Numbers whose name in English contains an "r".

Original entry on oeis.org

3, 4, 13, 14, 23, 24, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94, 103, 104, 113, 114, 123, 124, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
Offset: 1

Views

Author

Michael Joseph Halm, Jul 10 2004

Keywords

Comments

A008520 are numbers which contain an "e", A008540 an "f", A011538 a "g", A008536 an "n", A008519 an "o", A008538 an "s", A008522 a "t", A011534 a "u", A011532 a "w", A011536 an "x" and A008553 a "y"

Examples

			a(1) = 3 because "three" contains an "r", 0, 1 and 2 do not
		

Crossrefs

Previous Showing 21-30 of 31 results. Next