cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A293880 Numbers having '20' as substring of their digits.

Original entry on oeis.org

20, 120, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1220, 1320, 1420, 1520, 1620, 1720, 1820, 1920, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 20 of A292690 and A293869. A121040 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2100],SequenceCount[IntegerDigits[#],{2,0}]>0&] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    is_A293880 = has(n, p=20, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A257224 Numbers that have at least one divisor containing the digit 7 in base 10.

Original entry on oeis.org

7, 14, 17, 21, 27, 28, 34, 35, 37, 42, 47, 49, 51, 54, 56, 57, 63, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 91, 94, 97, 98, 102, 105, 107, 108, 111, 112, 114, 117, 119, 126, 127, 133, 134, 135, 136, 137, 140, 141, 142, 144, 146, 147, 148
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 7.
A011537 (numbers that contain a 7) is a subsequence. - Michel Marcus, May 25 2015

Examples

			14 is in sequence because the list of divisors of 14: (1, 2, 7, 14) contains digit 7.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257225 (8), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [7] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 7] > 0 &]
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 7), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257224_gen(): return filter(lambda n:any('7' in str(d) for d in divisors(n, generator=True)), count(1))
    A257224_list = list(islice(A257224_gen(), 60)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A175688 Numbers k with property that arithmetic mean of its digits is both an integer and one of the digits of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 102, 111, 120, 123, 132, 135, 147, 153, 159, 174, 195, 201, 204, 210, 213, 222, 231, 234, 240, 243, 246, 258, 264, 285, 306, 312, 315, 321, 324, 333, 342, 345, 351, 354, 357, 360, 369, 375, 396, 402
Offset: 1

Views

Author

Claudio Meller, Aug 09 2010

Keywords

Comments

Subsequence of A061383.
A180160(a(n)) = 0. - Reinhard Zumkeller, Aug 15 2010

Examples

			135 is in the list because (1+3+5)/3 = 3 and 3 is a digit of 135.
		

Crossrefs

Programs

  • Haskell
    a175688 n = a175688_list !! (n-1)
    a175688_list = filter f [0..] where
       f x = m == 0 && ("0123456789" !! avg) `elem` show x
             where (avg, m) = divMod (a007953 x) (a055642 x)
    -- Reinhard Zumkeller, Jun 18 2013
  • Mathematica
    idQ[n_]:=Module[{idn=IntegerDigits[n],m},m=Mean[idn];IntegerQ[m] && MemberQ[idn,m]]; Select[Range[0,500],idQ] (* Harvey P. Dale, Jun 10 2011 *)

Extensions

Edited by Reinhard Zumkeller, Aug 13 2010

A257668 Primes containing a digit 7.

Original entry on oeis.org

7, 17, 37, 47, 67, 71, 73, 79, 97, 107, 127, 137, 157, 167, 173, 179, 197, 227, 257, 271, 277, 307, 317, 337, 347, 367, 373, 379, 397, 457, 467, 479, 487, 547, 557, 571, 577, 587, 607, 617, 647, 673, 677, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761
Offset: 1

Views

Author

Vincenzo Librandi, May 03 2015

Keywords

Comments

Primes in A062675.
Subsequence of primes of A011537. - Michel Marcus, May 03 2015

Examples

			For n = 2, a(2) = 17 is the second prime containing a digit of 7.
		

Crossrefs

Cf. similar sequences listed in A257667.
Cf. A011537, A062675, A166579 (subsequence).

Programs

  • Magma
    [p: p in PrimesUpTo(800) | 7 in Intseq(p)];
    
  • Mathematica
    Select[Prime[Range[150]], ! StringFreeQ[ToString[#], "7"] &]
  • PARI
    lista(nn) = forprime(p=2, nn, if(vecsearch(vecsort(digits(p)), 7), print1(p, ", "))); \\ Altug Alkan, Apr 21 2016; corrected by Michel Marcus, Oct 30 2023
  • Sage
    [p for p in primes(800) if 7 in p.digits(base=10)] # Bruno Berselli, May 03 2015
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A043518 Numbers having two 7's in base 10.

Original entry on oeis.org

77, 177, 277, 377, 477, 577, 677, 707, 717, 727, 737, 747, 757, 767, 770, 771, 772, 773, 774, 775, 776, 778, 779, 787, 797, 877, 977, 1077, 1177, 1277, 1377, 1477, 1577, 1677, 1707, 1717, 1727, 1737, 1747, 1757, 1767, 1770, 1771
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011537.

Programs

  • Mathematica
    Select[Range[2000],DigitCount[#,10,7]==2&] (* Harvey P. Dale, Jul 30 2022 *)

A043519 Numbers having three 7's in base 10.

Original entry on oeis.org

777, 1777, 2777, 3777, 4777, 5777, 6777, 7077, 7177, 7277, 7377, 7477, 7577, 7677, 7707, 7717, 7727, 7737, 7747, 7757, 7767, 7770, 7771, 7772, 7773, 7774, 7775, 7776, 7778, 7779, 7787, 7797, 7877, 7977, 8777, 9777, 10777
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011537.

Programs

  • Mathematica
    Select[Range[11000],DigitCount[#,10,7]==3&] (* Harvey P. Dale, Mar 25 2015 *)

A043520 Numbers having four 7's in base 10.

Original entry on oeis.org

7777, 17777, 27777, 37777, 47777, 57777, 67777, 70777, 71777, 72777, 73777, 74777, 75777, 76777, 77077, 77177, 77277, 77377, 77477, 77577, 77677, 77707, 77717, 77727, 77737, 77747, 77757, 77767, 77770, 77771, 77772
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A011537.

A245877 Primes p such that p - d and p + d are also primes, where d is the largest digit of p.

Original entry on oeis.org

263, 563, 613, 653, 1613, 1663, 3463, 4643, 5563, 5653, 6263, 6323, 12653, 13463, 14633, 16063, 16223, 21163, 21563, 25463, 26113, 30643, 32063, 33623, 36313, 41263, 41603, 44263, 53623, 54623, 56003, 60133, 61553, 62213, 62633, 64013, 65413, 105613, 106213
Offset: 1

Views

Author

Colin Barker, Aug 05 2014

Keywords

Comments

Intersection of A245742 and A245743.
The largest digit of a(n) is 6, and the least significant digit of a(n) is 3.
Intersection of A006489, A011536, and complements of A011537, A011538, A011539. - Robert Israel, Aug 05 2014

Examples

			The prime 263 is in the sequence because 263 - 6 = 257 and 263 + 6 = 269 are both primes.
		

Crossrefs

Programs

  • Mathematica
    pdpQ[n_]:=Module[{m=Max[IntegerDigits[n]]},AllTrue[n+{m,-m},PrimeQ]]; Select[ Prime[Range[11000]],pdpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 13 2017 *)
  • PARI
    select(p->d=vecsort(digits(p),,4)[1]; isprime(p-d) && isprime(p+d), primes(20000))
    
  • Python
    import sympy
    from sympy import prime
    from sympy import isprime
    for n in range(1,10**5):
      s=prime(n)
      lst = []
      for i in str(s):
        lst.append(int(i))
      if isprime(s+max(lst)) and isprime(s-max(lst)):
        print(s,end=', ')
    # Derek Orr, Aug 13 2014

A285846 A039938 with duplicates removed.

Original entry on oeis.org

7, 37, 237, 1789, 4357, 14379, 19587, 93957, 189572, 189597, 1234397, 1839597, 1958798, 1983957, 3978594, 11983957, 19596487, 29195397, 39599197, 195991487, 339799143, 395991697, 1429199397, 1679895983, 1983994799, 2239951987, 11959939917, 15991995897
Offset: 1

Views

Author

J. Lowell, Apr 27 2017

Keywords

Comments

Any proof that this sequence is infinite?
This sequence is infinite because A039938 is indeed infinite and for any number k there is a multiple of k which does not contain a '7', so A039938 contains infinitely many distinct terms. Both parts are easy to prove. - Giovanni Resta, Feb 26 2019

Crossrefs

Cf. A039938.
Subsequence of A011537.

Programs

  • Mathematica
    Union@ Table[SelectFirst[Range[10^6], Times @@ Boole@ Map[DigitCount[#, 10, 7] > 0 &, # Range@ n] > 0 &], {n, 12}] (* Michael De Vlieger, Apr 27 2017, Version 10 *)

Extensions

a(19)-a(28) from Giovanni Resta, Apr 27 2017
Previous Showing 21-29 of 29 results.