cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A165421 a(1) = 1, a(2) = 3, a(n) = product of the previous terms for n >= 3.

Original entry on oeis.org

1, 3, 3, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961
Offset: 1

Views

Author

Jaroslav Krizek, Sep 17 2009

Keywords

Comments

Essentially a duplicate of A011764. - N. J. A. Sloane, Oct 06 2009

Programs

  • Mathematica
    a[1]:= 1; a[2]:= 3; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n], {n, 1, 12}] (* G. C. Greubel, Oct 19 2018 *)
    nxt[{prd_,a_}]:=Module[{c=prd*a},{c,prd*a}]; Join[{1,3},Rest[ NestList[ nxt,{1,3},10][[All,1]]]] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    {a(n) = if(n==1, 1, if(n==2, 3, prod(j=1,n-1, a(j))))};
    for(n=1,10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018

Formula

a(1) = 1, a(2) = 3, a(n) = Product_{i=1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 3, a(n) = A000244(2^(n-3)) = A011764(n-3) = 3^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 3, a(3) = 3, a(n) = (a(n-1))^2, n >= 4.

A059918 a(n) = (3^(2^n)-1)/2.

Original entry on oeis.org

1, 4, 40, 3280, 21523360, 926510094425920, 1716841910146256242328924544640, 5895092288869291585760436430706259332839105796137920554548480
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Denominator of b(n) where b(n) = 1/2*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002

Crossrefs

Cf. A059917 (numerators).

Programs

  • Mathematica
    Array[(3^(2^#) - 1)/2 &, 8, 0] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    { for (n=0, 11, write("b059918.txt", n, " ", (3^(2^n) - 1)/2); ) } \\ Harry J. Smith, Jun 30 2009

Formula

a(n) = a(n-1)*(3^(2^(n-1))+1) with a(0) = 1.
a(n) = (3^(2^n)-1)/2 = (A059723(n+1)-A059723(n))/A059723(n) = A059917(n)-1 = a(n-1)*A059919(n-1) = a(n-1)*(A011764(n-1)+1)
1 = Sum_{n>=0} 3^(2^n)/a(n+1). 1 = 3/4 + 9/40 + 81/3280 + 6561/21523360 + ...; with partial sums: 3/4, 39/40, 3279/3280, 21523359/21523360, ..., (a(n)-1)/a(n), ... . - Gary W. Adamson, Jun 22 2003
A136308(n) = A007089(a(n)). - Jason Kimberley, Dec 19 2012

A165427 a(1) = 1, a(2) = 9, a(n) = product of the previous terms for n >= 3.

Original entry on oeis.org

1, 9, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961
Offset: 1

Views

Author

Jaroslav Krizek, Sep 17 2009

Keywords

Programs

  • Mathematica
    a[1]:= 1; a[2]:= 9; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n],{n,1, 12}] (* G. C. Greubel, Oct 19 2018 *)
  • PARI
    {a(n) = if(n==1, 1, if(n==2, 9, prod(j=1,n-1, a(j))))};
    for(n=1,10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018

Formula

a(1) = 1, a(2) = 9, a(n) = Product_{i = 1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 9, a(n) = A001019(2^(n-3)) = 9^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 9, a(3) = 9, a(n) = (a(n-1))^2, n >= 4.
a(n) = A011764(n-2), n > 2. - R. J. Mathar, Sep 20 2009

A225156 Denominators of the sequence of fractions f(n) defined recursively by f(1) = 3/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.

Original entry on oeis.org

1, 2, 7, 67, 5623, 37772347, 1653794703916063, 3104205768420613437667191487267, 10767416908549848056705041797805600349527548164015760674541223
Offset: 1

Views

Author

Martin Renner, Apr 30 2013

Keywords

Comments

Numerators of the sequence of fractions f(n) is A165421(n+1), hence sum(A165421(i+1)/a(i),i=1..n) = product(A165421(i+1)/a(i),i=1..n) = A165421(n+2)/A225163(n) = A011764(n-1)/A225163(n).

Examples

			f(n) = 3, 3/2, 9/7, 81/67, ...
3 + 3/2 = 3 * 3/2 = 9/2; 3 + 3/2 + 9/7 = 3 * 3/2 * 9/7 = 81/14; ...
		

Crossrefs

Programs

  • Maple
    b:=n->3^(2^(n-2)); # n > 1
    b(1):=3;
    p:=proc(n) option remember; p(n-1)*a(n-1); end;
    p(1):=1;
    a:=proc(n) option remember; b(n)-p(n); end;
    a(1):=1;
    seq(a(i),i=1..9);

Formula

a(n) = 3^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1.
a(n) = 3^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1.

A225161 Denominators of the sequence of fractions f(n) defined recursively by f(1) = 9/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.

Original entry on oeis.org

1, 8, 73, 5977, 39556153, 1714946746986937, 3196895220321005409761642330233, 11033196234263169646028268239301916905952651329069957632398777
Offset: 1

Views

Author

Martin Renner, Apr 30 2013

Keywords

Comments

Numerators of the sequence of fractions f(n) is A165427(n+1), hence sum(A165427(i+1)/a(i),i=1..n) = product(A165427(i+1)/a(i),i=1..n) = A165427(n+2)/A225168(n) = A165421(n+3)/A225168(n) = A011764(n)/A225168(n).

Examples

			f(n) = 9, 9/8, 81/73, 6561/5977, ...
9 + 9/8 = 9 * 9/8 = 81/8; 9 + 9/8 + 81/73 = 9 * 9/8 * 81/73 = 6561/584; ...
		

Crossrefs

Programs

  • Maple
    b:=n->9^(2^(n-2)); # n > 1
    b(1):=9;
    p:=proc(n) option remember; p(n-1)*a(n-1); end;
    p(1):=1;
    a:=proc(n) option remember; b(n)-p(n); end;
    a(1):=1;
    seq(a(i),i=1..8);

Formula

a(n) = 9^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1.
a(n) = 9^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1.

A225163 Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 3/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.

Original entry on oeis.org

1, 2, 14, 938, 5274374, 199225484935778, 329478051871899046990657602014, 1022767669188735114815831063606918316150663428260080434555738
Offset: 1

Views

Author

Martin Renner, Apr 30 2013

Keywords

Comments

Numerators of the sequence s(n) of the sum resp. product of fractions f(n) is A165421(n+2), hence s(n) = sum(A165421(i+1)/A225156(i),i=1..n) = product(A165421(i+1)/A225156(i),i=1..n) = A165421(n+2)/a(n) = A011764(n-1)/a(n).

Examples

			f(n) = 3, 3/2, 9/7, 81/67, ...
3 + 3/2 = 3 * 3/2 = 9/2; 3 + 3/2 + 9/7 = 3 * 3/2 * 9/7 = 81/14; ...
s(n) = 1/b(n) = 3, 9/2, 81/14, ...
		

Crossrefs

Programs

  • Maple
    b:=proc(n) option remember; b(n-1)-b(n-1)^2; end:
    b(1):=1/3;
    a:=n->3^(2^(n-1))*b(n);
    seq(a(i),i=1..9);

Formula

a(n) = 3^(2^(n-1))*b(n) where b(n)=b(n-1)-b(n-1)^2 with b(1)=1/3.

A241241 If x is in the sequence then so are x^2 and x(x+1)/2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 10, 16, 21, 36, 45, 55, 81, 100, 136, 231, 256, 441, 666, 1035, 1296, 1540, 2025, 3025, 3321, 5050, 6561, 9316, 10000, 18496, 26796, 32896, 53361, 65536, 97461, 194481, 222111, 443556, 536130, 840456, 1071225, 1186570, 1679616, 2051325
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 17 2014

Keywords

Crossrefs

Subsequence of A005214; some subsequences: A001146, A007501, A011764, A176594, A173501, A050909.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a241241 n = a241241_list !! (n-1)
    a241241_list = 0 : 1 : f (singleton 2) where
       f s = m : f (insert (a000290 m) $ insert (a000217 m) s')
             where (m, s') = deleteFindMin s
  • Mathematica
    Nest[Flatten[{#,#^2,(#(#+1))/2}]&,{0,1,2},5]//Union (* Harvey P. Dale, Aug 12 2016 *)

Extensions

Initial 0 and 1 prepended by Jon Perry, Apr 17 2014

A079271 a(n) = 4 * a(n-1) * (3^(2^(n-1))-a(n-1)) with a(0)=1.

Original entry on oeis.org

1, 8, 32, 6272, 7250432, 1038154236987392, 3383826162019367796397224108032, 674838593766753484487654913831820720085359667709963001167872
Offset: 0

Views

Author

Henry Bottomley, Feb 06 2003

Keywords

Comments

a(n) is the numerator of b(n)=a(n)/3^(2^n)=a(n)/A011764(n) which is a logistic chaotic sequence of reals in (0,1) with b(n)=4*b(n-1)*(1-b(n-1)) starting at b(0)=1/3; the truncated values of b(n) start: 0.333..., 0.888..., 0.395..., 0.955..., 0.168..., 0.560..., 0.985..., 0.057..., 0.215..., etc.

A225168 Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 9/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.

Original entry on oeis.org

1, 8, 584, 3490568, 138073441864904, 236788599971507074896206759048, 756988343475413525492604622110601759725560263205883476698184
Offset: 1

Views

Author

Martin Renner, Apr 30 2013

Keywords

Comments

Numerators of the sequence s(n) of the sum resp. product of fractions f(n) is A165427(n+2), hence sum(A165427(i+1)/A225161(i),i=1..n) = product(A165427(i+1)/A225161(i),i=1..n) = A165427(n+2)/a(n) = A165421(n+3)/a(n) = A011764(n)/a(n).

Examples

			f(n) = 9, 9/8, 81/73, 6561/5977, ...
9 + 9/8 = 9 * 9/8 = 81/8; 9 + 9/8 + 81/73 = 9 * 9/8 * 81/73 = 6561/584; ...
s(n) = 1/b(n) = 9, 81/8, 6561/584, ...
		

Crossrefs

Programs

  • Maple
    b:=proc(n) option remember; b(n-1)-b(n-1)^2; end:
    b(1):=1/9;
    a:=n->9^(2^(n-1))*b(n);
    seq(a(i),i=1..8);

Formula

a(n) = 9^(2^(n-1))*b(n) where b(n)=b(n-1)-b(n-1)^2 with b(1)=1/9.

A361253 If n = m^2 for some m > 1 then a(n) = a(m), otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68
Offset: 0

Views

Author

Rémy Sigrist, Mar 06 2023

Keywords

Comments

All terms belong to A000037 U { 0, 1 }.
All terms of A000037 appear infinitely many times.
This sequence can be seen as the limit of the k-th iterate of A097448 as k tends to infinity.

Examples

			a(9) = a(3^2) = a(3) = 3 (as 3 is not a square).
		

Crossrefs

Programs

  • Mathematica
    nn = 120; Array[Set[a[#], #] &, 2, 0]; Do[If[IntegerQ[#], Set[k, a[#]], Set[k, n]] &[Sqrt[n]]; Set[a[n], k], {n, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 06 2023 *)
  • PARI
    a(n) = my (m); { while (n > 1 && issquare(n, &m), n = m); return (n) }
    
  • Python
    from sympy import integer_nthroot
    def A361253(n):
        if n <= 1:
            return n
        a, b = integer_nthroot(c:=n,2)
        while b:
            a, b = integer_nthroot(c:=a,2)
        return c # Chai Wah Wu, Mar 17 2023

Formula

a(a(n)) = a(n).
a(n) <= A097448(n).
a(n) = 2 iff n belongs to A001146.
a(n) = 3 iff n belongs to A011764.
a(n) = 5 iff n belongs to A176594.
Previous Showing 11-20 of 23 results. Next