cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Views

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)

A069092 Jordan function J_7(n).

Original entry on oeis.org

1, 127, 2186, 16256, 78124, 277622, 823542, 2080768, 4780782, 9921748, 19487170, 35535616, 62748516, 104589834, 170779064, 266338304, 410338672, 607159314, 893871738, 1269983744, 1800262812, 2474870590, 3404825446, 4548558848
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A069091 (J_6), A069092 (J_7), A069093 (J_8), A069094 (J_9), A069095 (J_10). [Enrique Pérez Herrero, Nov 02 2010]
Cf. A013666.

Programs

  • Mathematica
    JordanTotient[n_, k_: 1] := DivisorSum[n, (#^k)*MoebiusMu[n/# ] &] /; (n > 0) && IntegerQ[n]
    A069092[n_] := JordanTotient[n, 7]; (* Enrique Pérez Herrero, Nov 02 2010 *)
    f[p_, e_] := p^(7*e) - p^(7*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, d^7*moebius(n/d)), ", "))

Formula

a(n) = Sum_{d|n} d^7*mu(n/d).
Multiplicative with a(p^e) = p^(7e)-p^(7(e-1)).
Dirichlet generating function: zeta(s-7)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^7*Product_{distinct primes p dividing n} (1-1/p^7). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ 4725*n^8 / (4*Pi^8). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^7 = 1/zeta(8).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^7/(p^7-1)^2) = 1.0084115178... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A_7(x^n)/(1 - x^n)^8 = x + 127*x^2 + 2186*x^3 + 16256*x^4 + 78124*x^5 + ..., where A_7(x) = x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7 is the 7th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A321552 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^7.

Original entry on oeis.org

1, 127, 2188, 16255, 78126, 277876, 823544, 2080639, 4785157, 9922002, 19487172, 35565940, 62748518, 104590088, 170939688, 266321791, 410338674, 607714939, 893871740, 1269938130, 1801914272, 2474870844, 3404825448, 4552438132, 6103593751, 7969061786, 10465138360, 13386707720, 17249876310
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Sum_{k>=1} k^b*x^k/(1 + x^k): A000593 (b=1), A078306 (b=2), A078307 (b=3), A284900 (b=4), A284926 (b=5), A284927 (b=6), this sequence (b=7), A321553 (b=8), A321554 (b=9), A321555 (b=10), A321556 (b=11), A321557 (b=12).
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013666.

Programs

  • Mathematica
    f[p_, e_] := (p^(7*e + 7) - 1)/(p^7 - 1); f[2, e_] := (63*2^(7*e + 1) + 1)/127; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321552(n)=sumdiv(n, d, (-1)^(n\d-1)*d^7), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^7*x^k/(1 + x^k). - Seiichi Manyama, Nov 23 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (63*2^(7*e+1)+1)/127, and a(p^e) = (p^(7*e+7) - 1)/(p^7 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = 127*zeta(8)/1024 = 0.124529... . (End)

A096961 a(n) = Sum_{0

Original entry on oeis.org

1, 128, 2188, 16384, 78126, 280064, 823544, 2097152, 4785157, 10000128, 19487172, 35848192, 62748518, 105413632, 170939688, 268435456, 410338674, 612500096, 893871740, 1280016384, 1801914272, 2494358016, 3404825448
Offset: 1

Views

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 128*q^2 + 2188*q^3 + 16384*q^4 + 78126*q^5 + 280064*q^6 + 823544*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(2), 8), 24); A[2] + 128*A[3]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u2 = QPochhammer[ q^2]^8, u4 = QPochhammer[ q^4]^8}, q u2 (u1^2 + 136 q u4 u1 + 2176 q^2 u4^2 ) / u1], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^7 Mod[ n/d, 2], {d, Divisors[ n]}]]; (* Michael Somos, Jan 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^7))};
    
  • Sage
    ModularForms( Gamma0(2), 8, prec=24).2; # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum_{k>0} k^7 * x^k / (1 - x^(2*k)).
Expansion of (E_8(q) - E_8(q^2)) / 480 in powers of q where E_8() is an Eisenstein series (A008410). - Michael Somos, Jan 09 2015
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(7*e) and a(p^e) = (p^(7*e+7)-1)/(p^7-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = 255*zeta(8)/2048 = 17*Pi^8/1290240 = 0.125019... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-7)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A282753 Expansion of phi_{9, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 516, 19692, 264208, 1953150, 10161072, 40353656, 135274560, 387597717, 1007825400, 2357947812, 5202783936, 10604499542, 20822486496, 38461429800, 69260574976, 118587876786, 200000421972, 322687698140, 516037855200, 794644193952, 1216701070992
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A013955 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), A282751 (phi_{7, 2}), this sequence (phi_{9, 2}).
Cf. A282752 (E_2^2*E_4^2), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A013955 (sigma_7(n)), A282060 (n*sigma_7(n)), this sequence (n^2*sigma_7(n)).
Cf. A013666.

Programs

  • Mathematica
    Table[If[n>0, n^2 * DivisorSigma[7, n], 0], {n, 0, 22}] (* Indranil Ghosh, Mar 12 2017 *)
    nmax = 40; CoefficientList[Series[Sum[k^9*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    for(n=0, 22, print1(if(n==0, 0, n^2 * sigma(n, 7)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

a(n) = n^2*A013955(n) for n > 0.
a(n) = (9*A282752(n) - 18*A282102(n) + 5*A008411(n) + 4*A280869(n))/8640.
Sum_{k=1..n} a(k) ~ zeta(8) * n^10 / 10. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-9). (End)
G.f.: Sum_{k>=1} k^9*x^k*(1 + x^k)/(1 - x^k)^3. - Vaclav Kotesovec, Aug 02 2025

A347218 Decimal expansion of Sum_{k=2..8} zeta(k).

Original entry on oeis.org

7, 9, 9, 6, 0, 1, 1, 6, 5, 4, 4, 2, 6, 6, 4, 5, 1, 4, 5, 6, 5, 2, 5, 2, 3, 2, 2, 9, 3, 0, 5, 0, 4, 7, 0, 0, 3, 5, 7, 6, 4, 0, 9, 9, 0, 6, 2, 1, 5, 8, 7, 9, 3, 2, 7, 7, 7, 3, 8, 0, 0, 6, 8, 1, 2, 8, 8, 2, 8, 6, 4, 9, 5, 9, 5, 6, 8, 2, 6, 7, 4, 2, 7, 6, 1, 1, 9
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			7.99601165442664514565252322930504700357640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 8]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

Formula

Equals A347217 + A013666. - R. J. Mathar, May 27 2024

A347219 Decimal expansion of Sum_{k=2..9} zeta(k).

Original entry on oeis.org

8, 9, 9, 8, 0, 2, 0, 0, 4, 7, 2, 5, 2, 7, 2, 7, 3, 6, 0, 0, 7, 0, 3, 7, 5, 9, 9, 8, 5, 3, 7, 4, 5, 9, 0, 6, 4, 0, 6, 2, 0, 1, 5, 7, 5, 7, 6, 1, 0, 7, 6, 8, 0, 8, 4, 3, 2, 2, 3, 9, 7, 2, 9, 7, 1, 9, 8, 0, 7, 1, 5, 4, 9, 3, 4, 7, 0, 8, 5, 1, 4, 1, 7, 1, 1, 5, 8
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			8.9980200472527273600703759985374590640620...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 9]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347220 Decimal expansion of Sum_{k=2..10} zeta(k).

Original entry on oeis.org

9, 9, 9, 9, 0, 1, 4, 6, 2, 2, 3, 8, 0, 5, 4, 5, 4, 4, 5, 4, 0, 7, 5, 2, 1, 9, 5, 7, 4, 3, 7, 7, 7, 8, 0, 8, 1, 0, 6, 8, 0, 3, 5, 2, 8, 9, 1, 7, 5, 2, 4, 5, 6, 0, 1, 5, 8, 0, 1, 8, 6, 2, 9, 1, 8, 3, 4, 3, 6, 3, 0, 1, 4, 4, 9, 8, 9, 9, 8, 0, 9, 6, 1, 0, 8, 6, 3
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			9.9990146223805454454075219574377780810680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 10]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A372964 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( n/gcd(x_1, x_2, x_3, x_4, n) )^3.

Original entry on oeis.org

1, 121, 2161, 15481, 78001, 261481, 823201, 1981561, 4726081, 9438121, 19485841, 33454441, 62746321, 99607321, 168560161, 253639801, 410333761, 571855801, 893864881, 1207533481, 1778937361, 2357786761, 3404813281, 4282153321, 6093828001, 7592304841, 10335939121
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(7*e+7) - p^(7*e+3) + p^3 - 1)/(p^7-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^3*sigma(d, 7));

Formula

a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_7(d).
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(7*e+7) - p^(7*e+3) + p^3 - 1)/(p^7-1).
Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(s-3).
Sum_{k=1..n} a(k) ~ c * n^8 / 8, where c = zeta(8)/zeta(5) = 0.968319491... . (End)
a(n) = Sum_{d|n} phi(n/d) * (n/d)^6 * sigma_6(d^2)/sigma_3(d^2). - Seiichi Manyama, May 24 2024
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, x_4, n) )^4. - Seiichi Manyama, May 25 2024

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019
Previous Showing 21-30 of 52 results. Next