cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A282254 Coefficients in q-expansion of (3*E_4^3 + 2*E_6^2 - 5*E_2*E_4*E_6)/1584, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 1026, 59052, 1050628, 9765630, 60587352, 282475256, 1075843080, 3486961557, 10019536380, 25937424612, 62041684656, 137858491862, 289819612656, 576679982760, 1101663313936, 2015993900466, 3577622557482, 6131066257820, 10260044315640
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 25 2018
D. H. Lehmer shows that a(n) == tau(n) (mod 7) for n > 0, where tau is Ramanujan's tau function (A000594). Furthermore, if n == 3, 5, 6 (mod 7) then a(n) == tau(n) (mod 49). See the Wikipedia link below. - Jianing Song, Aug 12 2020

Examples

			a(6) = 1^10*6^1 + 2^10*3^1 + 3^10*2^1 + 6^10*1^1 = 60587352.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), this sequence (phi_{10, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008411 (E_4^3), A280869 (E_6^2), A282102 (E_2*E_4*E_6).

Programs

  • Mathematica
    Table[If[n>0, n * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

G.f.: phi_{10, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (3*A008411(n) + 2*A280869(n) - 5*A282102(n))/1584.
If p is a prime, a(p) = p^10 + p = A196292(p).
a(n) = n*A013957(n) for n > 0, where A013957(n) is sigma_9(n), the sum of the 9th powers of the divisors of n. - Seiichi Manyama, Feb 18 2017
Multiplicative with a(p^e) = p^e*(p^(9*(e+1))-1)/(p^9-1). - Jianing Song, Aug 12 2020
From Amiram Eldar, Oct 30 2023: (Start)
Dirichlet g.f.: zeta(s-1)*zeta(s-10).
Sum_{k=1..n} a(k) ~ zeta(10) * n^11 / 11. (End)

A321554 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^9.

Original entry on oeis.org

1, 511, 19684, 261631, 1953126, 10058524, 40353608, 133955071, 387440173, 998047386, 2357947692, 5149944604, 10604499374, 20620693688, 38445332184, 68584996351, 118587876498, 197981928403, 322687697780, 510998308506, 794320419872, 1204911270612, 1801152661464, 2636771617564, 3814699218751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013668.

Programs

  • Mathematica
    f[p_, e_] := (p^(9*e + 9) - 1)/(p^9 - 1); f[2, e_] := (255*2^(9*e + 1) + 1)/511; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321554(n)=sumdiv(n, d, (-1)^(n\d-1)*d^9), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^9*x^k/(1 + x^k). - Seiichi Manyama, Nov 24 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (255*2^(9*e+1)+1)/511, and a(p^e) = (p^(9*e+9) - 1)/(p^9 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = 511*zeta(10)/5120 = 0.0999039... . (End)

A347220 Decimal expansion of Sum_{k=2..10} zeta(k).

Original entry on oeis.org

9, 9, 9, 9, 0, 1, 4, 6, 2, 2, 3, 8, 0, 5, 4, 5, 4, 4, 5, 4, 0, 7, 5, 2, 1, 9, 5, 7, 4, 3, 7, 7, 7, 8, 0, 8, 1, 0, 6, 8, 0, 3, 5, 2, 8, 9, 1, 7, 5, 2, 4, 5, 6, 0, 1, 5, 8, 0, 1, 8, 6, 2, 9, 1, 8, 3, 4, 3, 6, 3, 0, 1, 4, 4, 9, 8, 9, 9, 8, 0, 9, 6, 1, 0, 8, 6, 3
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			9.9990146223805454454075219574377780810680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 10]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019

A344306 Number of cyclic subgroups of the group (C_n)^10, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1024, 29525, 524800, 2441407, 30233600, 47079209, 268698112, 581150417, 2500000768, 2593742461, 15494720000, 11488207655, 48209110016, 72082541675, 137573433856, 125999618779, 595098027008, 340614792101, 1281250393600
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160957.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160957(n) = sumdiv(n, d, moebius(n/d)*d^10)/eulerphi(n);
    a(n) = sumdiv(n, d, a160957(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_10|n} phi(x_1)*phi(x_2)* ... *phi(x_10)/phi(lcm(x_1, x_2, ..., x_10)).
If p is prime, a(p) = 1 + (p^10 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} ((1-1/p^9)/(p^2*(1-1/p))) = 0.1944248708... . (End)

A157291 Decimal expansion of Zeta(5)/Zeta(10).

Original entry on oeis.org

1, 0, 3, 5, 8, 9, 7, 4, 7, 7, 2, 7, 7, 5, 0, 0, 2, 2, 4, 3, 9, 4, 4, 9, 8, 5, 8, 7, 4, 5, 6, 0, 9, 5, 6, 8, 4, 2, 4, 7, 8, 8, 4, 2, 5, 6, 0, 7, 6, 8, 9, 4, 8, 0, 8, 2, 2, 4, 6, 6, 5, 4, 2, 3, 7, 4, 4, 6, 6, 9, 2, 5, 6, 1, 2, 4, 0, 3, 3, 7, 4, 1, 8, 9, 3, 2, 1, 5, 9, 8, 8, 3, 9, 3, 9, 0, 6, 8, 0, 1, 1, 4, 6, 3, 0
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The product_{p = primes = A000040} (1+1/p^5), the fifth-power analog to A082020.

Examples

			1.035897477277500224... = (1+1/2^5)*(1+1/3^5)*(1+1/5^5)*(1+1/7^5)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(5)/Zeta(10)) ;
  • Mathematica
    RealDigits[Zeta[5]/Zeta[10],10,120][[1]] (* Harvey P. Dale, Apr 06 2013 *)

Formula

Equals A013663/A013668 = Product_{i>=1} (1+1/A050997(i)).
Equals Sum_{k>=1} 1/A005117(k)^5 = 1 + Sum_{k>=1} 1/A113850(k). - Amiram Eldar, May 22 2020
Equals 93555 * zeta(5) / Pi^10. - Vaclav Kotesovec, May 22 2020

A160957 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.

Original entry on oeis.org

1, 1023, 29524, 523776, 2441406, 30203052, 47079208, 268173312, 581120892, 2497558338, 2593742460, 15463962624, 11488207654, 48162029784, 72080070744, 137304735744, 125999618778, 594486672516, 340614792100, 1278749869056
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^10 such that the quotient group Z^10 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 10 of A263950.

Programs

  • Mathematica
    b = 11; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 20}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(9*e - 9) * (p^10-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^9, d, if(ispower(d, 10), moebius(sqrtnint(d, 10))*sigma(n^9/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^10 - 1)*f[i,1]^(9*f[i,2] - 9)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = A069095(n)/A000010(n). - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(9e-9) * (p^10-1) / (p-1).
For squarefree n, a(n) = A000203(n^9). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^10, where c = (1/10) * Product_{p prime} (1 + (p^9-1)/((p-1)*p^10)) = 0.1942316928... .
Sum_{k>=1} 1/a(k) = zeta(9)*zeta(10) * Product_{p prime} (1 - 2/p^10 + 1/p^19) = 1.0010137674... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^10). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A160960 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12.

Original entry on oeis.org

1, 2047, 88573, 2096128, 12207031, 181308931, 329554457, 2146435072, 5230147077, 24987792457, 28531167061, 185660345344, 149346699503, 674597973479, 1081213356763, 2197949513728, 2141993519227, 10706111066619, 6471681049901, 25587499475968, 29189626919861, 58403298973867
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^11 such that the quotient group Z^11 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 11 of A263950.

Programs

  • Mathematica
    b = 12; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 18}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(10*e - 10) * (p^11-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^10, d, if(ispower(d, 11), moebius(sqrtnint(d, 11))*sigma(n^10/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^11 - 1)*f[i,1]^(10*f[i,2] - 10)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_11(n)/J_1(n) where J_11 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(10e-10) * (p^11-1) / (p-1).
For squarefree n, a(n) = A000203(n^10). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^11, where c = (1/11) * Product_{p prime} (1 + (p^10-1)/((p-1)*p^11)) = 0.1766326404... .
Sum_{k>=1} 1/a(k) = zeta(10)*zeta(11) * Product_{p prime} (1 - 2/p^11 + 1/p^21) = 1.0005003781952... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^11). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A321813 Sum of 9th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 19684, 1, 1953126, 19684, 40353608, 1, 387440173, 1953126, 2357947692, 19684, 10604499374, 40353608, 38445332184, 1, 118587876498, 387440173, 322687697780, 1953126, 794320419872, 2357947692, 1801152661464, 19684, 3814699218751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=9 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^9 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321813(n)=sigma(n>>valuation(n,2),9), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321813(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),9)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013957(A000265(n)) = sigma_9(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^9*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/20 = Pi^10/1871100 = 0.0500497... . (End)

A347330 Decimal expansion of zeta(10) / zeta(5).

Original entry on oeis.org

9, 6, 5, 3, 4, 6, 4, 9, 6, 0, 9, 1, 6, 3, 6, 0, 3, 6, 2, 1, 3, 7, 7, 2, 9, 6, 4, 2, 4, 3, 2, 2, 1, 2, 2, 4, 7, 4, 0, 5, 0, 1, 6, 0, 5, 3, 1, 8, 7, 3, 0, 1, 8, 0, 1, 5, 7, 5, 6, 4, 6, 4, 7, 2, 6, 8, 8, 1, 8, 6, 5, 2, 4, 4, 3, 9, 9, 0, 6, 4, 8, 0, 5, 4, 8, 3, 8
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.96534649609163603621377296424322122474050...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[10] / Zeta[5], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals Sum_{k>=1} A008836(k) / k^5.
Equals Product_{p prime} 1/(1+p^(-5)). [corrected by Amiram Eldar, Jun 06 2023]
Equals 1/A157291. - R. J. Mathar, Jul 20 2025
Previous Showing 21-30 of 44 results. Next