cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A015053 Smallest positive integer for which n divides a(n)^6.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller (Research37(AT)aol.com)

Keywords

Comments

Differs from A007947 as follows: A007947(128)=2, a(128)=4; A007947(256)=2, a(256)=4; A007947(384)=6, a(384)=12; A007947(512)=2, a(512)=4; A007947(640)=10, a(640)=20, etc. - R. J. Mathar, Oct 28 2008

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (5th outer root).
Cf. A013669.

Programs

  • Mathematica
    spi[n_]:=Module[{k=1},While[PowerMod[k,6,n]!=0,k++];k]; Array[spi,80] (* Harvey P. Dale, Feb 29 2020 *)
    f[p_, e_] := p^Ceiling[e/6]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = ceil(f[i,2]/6)); factorback(f); \\ Michel Marcus, Feb 15 2015

Formula

Multiplicative with a(p^e) = p^ceiling(e/6). - Christian G. Bower, May 16 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(11)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6 + 1/p^7 - 1/p^8 + 1/p^9 - 1/p^10) = 0.3522558764... . - Amiram Eldar, Oct 27 2022

Extensions

Corrected by David W. Wilson, Jun 04 2002

A023878 Expansion of Product_{k>=1} (1 - x^k)^(-k^9).

Original entry on oeis.org

1, 1, 513, 20196, 413668, 12444489, 372960863, 9158023846, 223763768245, 5567490203192, 132000248840652, 3018181447183141, 68165389692659690, 1512302997486058542, 32793035921825542778, 698432551205542941608, 14654522099892985823429, 302753023792981375706399
Offset: 0

Views

Author

Keywords

Comments

In general, column m > 0 of A144048 is asymptotic to (Gamma(m+2)*Zeta(m+2))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * (Gamma(m+2)*Zeta(m+2))^(1/(m+2)) * n^((m+1)/(m+2)) + Zeta'(-m)) / (sqrt(2*Pi*(m+2)) * n^((m+3-2*Zeta(-m))/(2*m+4))). - Vaclav Kotesovec, Mar 01 2015

Crossrefs

Column k=9 of A144048. - Alois P. Heinz, Nov 02 2012

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^9: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*d^9, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1-x^k)^(k^9),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 01 2015 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^9)) \\ G. C. Greubel, Oct 31 2018
    

Formula

a(n) ~ 3^(67/363) * 5^(67/726) * (7*Zeta(11))^(67/1452) * exp(11 * 3^(4/11) * n^(10/11) * (7*Zeta(11))^(1/11) / (2^(3/11) * 5^(9/11)) + Zeta'(-9)) / (2^(95/726) * sqrt(11*Pi) * n^(793/1452)), where Zeta(11) = A013669 = 1.00049418860411946..., Zeta'(-9) = (5*(7129/2520 - gamma - log(2*Pi))/66 + 14175*Zeta'(10) / (2*Pi^10))/10 = 0.00313014531978857275492576829... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_10(n)*x^n/n ). - Seiichi Manyama, Mar 05 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_10(k)*a(n-k). - Seiichi Manyama, Mar 05 2017

Extensions

Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006

A321555 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^10.

Original entry on oeis.org

1, 1023, 59050, 1047551, 9765626, 60408150, 282475250, 1072692223, 3486843451, 9990235398, 25937424602, 61857886550, 137858491850, 288972180750, 576660215300, 1098436836351, 2015993900450, 3567040850373, 6131066257802, 10229991281926, 16680163512500, 26533985367846, 41426511213650, 63342475768150
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013669.

Programs

  • Mathematica
    f[p_, e_] := (p^(10*e + 10) - 1)/(p^10 - 1); f[2, e_] := (511*2^(10*e + 1) + 1)/1023; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321555(n)=sumdiv(n, d, (-1)^(n\d-1)*d^10), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^10*x^k/(1 + x^k). - Seiichi Manyama, Nov 25 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (511*2^(10*e+1)+1)/1023, and a(p^e) = (p^(10*e+10) - 1)/(p^10 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = 93*zeta(11)/1024 = 0.0908651... . (End)

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019

A373105 a(n) = sigma_10(n^2)/sigma_5(n^2).

Original entry on oeis.org

1, 993, 58807, 1016801, 9762501, 58395351, 282458443, 1041204193, 3472494301, 9694163493, 25937263551, 59795016407, 137858120557, 280481233899, 574103396307, 1066193093601, 2015992480593, 3448186840893, 6131063781703, 9926520779301
Offset: 1

Views

Author

Seiichi Manyama, May 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(10*e+5) + 1)/(p^5 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = sigma(n^2, 10)/sigma(n^2, 5);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^5*sigma(d, 10));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x^5, n) )^5.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^5 * sigma_10(d).
From Amiram Eldar, May 25 2024: (Start)
Multiplicative with a(p^e) = (p^(10*e+5) + 1)/(p^5 + 1).
Dirichlet g.f.: zeta(s)*zeta(s-10)/zeta(s-5).
Sum_{k=1..n} a(k) ~ c * n^11 / 11, where c = zeta(11)/zeta(6) = 0.9834383562... . (End)

A160960 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12.

Original entry on oeis.org

1, 2047, 88573, 2096128, 12207031, 181308931, 329554457, 2146435072, 5230147077, 24987792457, 28531167061, 185660345344, 149346699503, 674597973479, 1081213356763, 2197949513728, 2141993519227, 10706111066619, 6471681049901, 25587499475968, 29189626919861, 58403298973867
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^11 such that the quotient group Z^11 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 11 of A263950.

Programs

  • Mathematica
    b = 12; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 18}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(10*e - 10) * (p^11-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^10, d, if(ispower(d, 11), moebius(sqrtnint(d, 11))*sigma(n^10/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^11 - 1)*f[i,1]^(10*f[i,2] - 10)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_11(n)/J_1(n) where J_11 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(10e-10) * (p^11-1) / (p-1).
For squarefree n, a(n) = A000203(n^10). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^11, where c = (1/11) * Product_{p prime} (1 + (p^10-1)/((p-1)*p^11)) = 0.1766326404... .
Sum_{k>=1} 1/a(k) = zeta(10)*zeta(11) * Product_{p prime} (1 - 2/p^11 + 1/p^21) = 1.0005003781952... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^11). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A160972 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 13.

Original entry on oeis.org

1, 4095, 265720, 8386560, 61035156, 1088123400, 2306881200, 17175674880, 47071500840, 249938963820, 313842837672, 2228476723200, 1941507093540, 9446678514000, 16218261652320, 35175782154240, 36413889826860, 192757795939800, 122961939948120, 511874997903360, 612984472464000
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^12 such that the quotient group Z^12 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 12 of A263950.

Programs

  • Mathematica
    b = 13; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 17}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(11*e - 11) * (p^12-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^11, d, if(ispower(d, 12), moebius(sqrtnint(d, 12))*sigma(n^11/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^12 - 1)*f[i,1]^(11*f[i,2] - 11)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_12(n)/J_1(n) where J_12 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(11e-11) * (p^12-1) / (p-1).
For squarefree n, a(n) = A000203(n^11). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^12, where c = (1/12) * Product_{p prime} (1 + (p^11-1)/((p-1)*p^12)) = 0.1619398772... .
Sum_{k>=1} 1/a(k) = zeta(11)*zeta(12) * Product_{p prime} (1 - 2/p^12 + 1/p^23) = 1.0002481006668... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^12). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A321814 Sum of 10th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 59050, 1, 9765626, 59050, 282475250, 1, 3486843451, 9765626, 25937424602, 59050, 137858491850, 282475250, 576660215300, 1, 2015993900450, 3486843451, 6131066257802, 9765626, 16680163512500, 25937424602, 41426511213650, 59050
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=10 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^10 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321814(n)=sigma(n>>valuation(n,2),10), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321814(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),10)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013958(A000265(n)) = sigma_10(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^10*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/22 = 0.045477... . (End)

A016847 a(n) = (4n+3)^11.

Original entry on oeis.org

177147, 1977326743, 285311670611, 8649755859375, 116490258898219, 952809757913927, 5559060566555523, 25408476896404831, 96549157373046875, 317475837322472439, 929293739471222707, 2472159215084012303, 6071163615208263051, 13931233916552734375
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A004767(n)^11. - Michel Marcus, Apr 27 2014
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/4096 - 50521*Pi^11/29727129600. - Amiram Eldar, Apr 24 2023

A017683 Numerator of sum of -10th powers of divisors of n.

Original entry on oeis.org

1, 1025, 59050, 1049601, 9765626, 30263125, 282475250, 1074791425, 3486843451, 200195333, 25937424602, 10329823175, 137858491850, 144768565625, 23066408612, 1100586419201, 2015993900450, 3574014537275, 6131066257802, 5125005407613, 16680163512500, 13292930108525
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ...
		

Crossrefs

Cf. A017684 (denominator), A013668, A013669.

Programs

  • Magma
    [Numerator(DivisorSigma(10,n)/n^10): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-10]],{n,20}] (* Harvey P. Dale, Sep 04 2018 *)
    Table[Numerator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 10)/n^10)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017684(n) = zeta(10) (A013668).
Dirichlet g.f. of a(n)/A017684(n): zeta(s)*zeta(s+10).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017684(k) = zeta(11) (A013669). (End)
Previous Showing 21-30 of 45 results. Next