cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A017685 Numerator of sum of -11th powers of divisors of n.

Original entry on oeis.org

1, 2049, 177148, 4196353, 48828126, 30248021, 1977326744, 8594130945, 31381236757, 50024415087, 285311670612, 185843885311, 1792160394038, 506442812307, 2883268288216, 17600780175361, 34271896307634, 21433384705031, 116490258898220, 102450026512239, 350279478046112
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017686 (denominator), A013669, A013670.

Programs

  • Magma
    [Numerator(DivisorSigma(11,n)/n^11): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-11]],{n,20}] (* Harvey P. Dale, Aug 26 2012 *)
    Table[Numerator[DivisorSigma[11, n]/n^11], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 11)/n^11)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017686(n) = zeta(11) (A013669).
Dirichlet g.f. of a(n)/A017686(n): zeta(s)*zeta(s+11).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017686(k) = zeta(12) (A013670). (End)

A321819 a(n) = Sum_{d|n, n/d odd} d^10 for n > 0.

Original entry on oeis.org

1, 1024, 59050, 1048576, 9765626, 60467200, 282475250, 1073741824, 3486843451, 10000001024, 25937424602, 61918412800, 137858491850, 289254656000, 576660215300, 1099511627776, 2015993900450, 3570527693824, 6131066257802, 10240001048576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013669.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^10 &, OddQ[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    apply( A321819(n)=sumdiv(n,d,if(bittest(n\d,0),d^10)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^10*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(10*e) and a(p^e) = (p^(10*e+10)-1)/(p^10-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = 2047*zeta(11)/22528 = 0.090909606... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-10)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A016823 a(n) = (4n+1)^11.

Original entry on oeis.org

1, 48828125, 31381059609, 1792160394037, 34271896307633, 350277500542221, 2384185791015625, 12200509765705829, 50542106513726817, 177917621779460413, 550329031716248441, 1532278301220703125, 3909821048582988049, 9269035929372191597, 20635899893042801193
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n+1)^11 : n in [0..20]]; // Wesley Ivan Hurt, Oct 10 2014
  • Maple
    A016823:=n->(4*n+1)^11: seq(A016823(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Table[(4 n + 1)^11, {n, 0, 20}] (* Wesley Ivan Hurt, Oct 10 2014 *)
    CoefficientList[Series[(1 + 48828113 x + 30795122175 x^2 + 1418810334759 x^3 + 14826379326378 x^4 + 50417667664170 x^5 + 64020606756990 x^6 + 31088834650350 x^7 + 5356480404741 x^8 + 261595441397 x^9 + 1975200979 x^10 + 177147 x^11)/(x - 1)^12, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 10 2014 *)

Formula

From Wesley Ivan Hurt, Oct 10 2014 : (Start)
G.f.: (1 + 48828113*x + 30795122175*x^2 + 1418810334759*x^3 + 14826379326378*x^4 + 50417667664170*x^5 + 64020606756990*x^6 + 31088834650350*x^7 + 5356480404741*x^8 + 261595441397*x^9 + 1975200979*x^10 + 177147*x^11) / (x - 1)^12.
Recurrence: a(n) = 12*a(n-1)-66*a(n-2)+220*a(n-3)-495*a(n-4)+792*a(n-5)-924*a(n-6)+792*a(n-7)-495*a(n-8)+220*a(n-9)-66*a(n-10)+12*a(n-11)-a(n-12).
a(n) = A016813(n)^11 = A001020(A016813(n)). (End)
Sum_{n>=0} 1/a(n) = 50521*Pi^11/29727129600 + 2047*zeta(11)/4096. - Amiram Eldar, Apr 21 2023

A161004 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 12.

Original entry on oeis.org

4095, 8382465, 362706435, 8583644160, 49987791945, 742460072445, 1349525501415, 8789651619840, 21417452280315, 102325010111415, 116835129114795, 760279114183680, 611574734464785, 2762478701396505, 4427568695944485, 9000603258716160, 8771463461234565
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(10*e - 10) * (p^11-1) / (p-1); a[1] = 4095; a[n_] := 4095 * Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 4095 * prod(i = 1, #f~, (f[i,1]^11 - 1)*f[i,1]^(10*f[i,2] - 10)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 4095 * A160960(n).
Sum_{k=1..n} a(k) ~ c * n^11, where c = (4095/11) * Product_{p prime} (1 + (p^10-1)/((p-1)*p^11)) = 723.3106628... .
Sum_{k>=1} 1/a(k) = (zeta(10)*zeta(11)/4095) * Product_{p prime} (1 - 2/p^11 + 1/p^21) = 0.0002443224366... . (End)

A309929 Decimal expansion of Pi^11/Zeta(11).

Original entry on oeis.org

2, 9, 4, 0, 5, 8, 6, 9, 7, 5, 1, 6, 6, 3, 5, 6, 6, 3, 0, 6, 8, 0, 5, 6, 0, 3, 2, 1, 7, 7, 4, 9, 1, 1, 8, 9, 6, 1, 2, 1, 8, 9, 5, 6, 0, 9, 7, 2, 4, 4, 8, 1, 6, 4, 1, 1, 7, 5, 1, 2, 5, 6, 6, 9, 6, 9, 9, 3, 8, 7, 4, 7, 4, 4, 9, 0, 5, 3, 2, 6, 2, 0, 5, 3, 4, 8, 7
Offset: 6

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^11/Zeta[11], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^11/zeta(11)

Extensions

More terms from Amiram Eldar, Aug 24 2019

A016835 a(n) = (4n+2)^11.

Original entry on oeis.org

2048, 362797056, 100000000000, 4049565169664, 64268410079232, 584318301411328, 3670344486987776, 17714700000000000, 70188843638032384, 238572050223552512, 717368321110468608, 1951354384207722496, 4882812500000000000, 11384956040305711104, 24986644000165537792
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4*n+2)^11, {n, 0, 20}] (* Amiram Eldar, Apr 21 2023 *)

Formula

From Amiram Eldar, Apr 21 2023: (Start)
a(n) = A016825(n)^11.
a(n) = 2^11*A016763(n).
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/4194304.
Sum_{n>=0} (-1)^n/a(n) = 50521*Pi^11/30440580710400. (End)

A017099 a(n) = (8*n + 2)^11.

Original entry on oeis.org

2048, 100000000000, 64268410079232, 3670344486987776, 70188843638032384, 717368321110468608, 4882812500000000000, 24986644000165537792, 103510234140112521216, 364375289404334925824, 1127073856954876807168, 3138105960900000000000, 8007313507497959524352
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^11.
a(n) = 2^11*A016823(n).
Sum_{n>=0} 1/a(n) = 50521*Pi^11/60881161420800 + 2047*zeta(11)/8388608. (End)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12). - Wesley Ivan Hurt, Jan 20 2024

A017123 a(n) = (8*n + 4)^11.

Original entry on oeis.org

4194304, 743008370688, 204800000000000, 8293509467471872, 131621703842267136, 1196683881290399744, 7516865509350965248, 36279705600000000000, 143746751770690322432, 488595558857835544576, 1469170321634239709184, 3996373778857415671808, 10000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: ( 4194304*(1+x)*(x^10 + 177134*x^9 + 46525293*x^8 + 1356555432*x^7 + 9480267666*x^6 + 19107752148*x^5 + 9480267666*x^4 + 1356555432*x^3 + 46525293*x^2 + 177134*x+1) ) / ( (x-1)^12 ). - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^11.
a(n) = 2^11*A016835(n) = 2^22*A016763(n).
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/8589934592.
Sum_{n>=0} (-1)^n/a(n) = 50521*Pi^11/62342309294899200. (End)

A017147 a(n) = (8*n+6)^11.

Original entry on oeis.org

362797056, 4049565169664, 584318301411328, 17714700000000000, 238572050223552512, 1951354384207722496, 11384956040305711104, 52036560683837093888, 197732674300000000000, 650190514836423555072, 1903193578437064103936, 5062982072492057196544, 12433743083946522728448
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2048*A016847(n). - R. J. Mathar, Aug 26 2015
From Amiram Eldar, Apr 26 2023: (Start)
a(n) = A017137(n)^11.
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/8388608 - 50521*Pi^11/60881161420800. (End)

A017207 a(n) = (9*n + 3)^11.

Original entry on oeis.org

177147, 743008370688, 350277500542221, 17714700000000000, 317475837322472439, 3116402981210161152, 20635899893042801193, 103510234140112521216, 422351360321044921875, 1469170321634239709184, 4501035456767426597157, 12433743083946522728448, 31517572945366073781711
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(9*n+3)^11: n in [0..15]]; // Vincenzo Librandi, Jul 23 2011
  • Mathematica
    Table[(9*n + 3)^11, {n, 0, 15}] (* Amiram Eldar, Oct 03 2024 *)

Formula

From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^11 = 3^11 * A016787(n).
Sum_{n>=0} 1/a(n) = 7388*Pi^11/(444826519957575*sqrt(3)) + 88573*zeta(11)/31381059609. (End)
Previous Showing 31-40 of 45 results. Next