A322390
Number of integer partitions of n with vertex-connectivity 1.
Original entry on oeis.org
0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 3, 11, 1, 14, 2, 18, 7, 21, 6, 35, 14, 43, 28, 65, 42, 96, 70, 141, 120, 205, 187, 315, 286, 445, 445, 657
Offset: 1
The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222).
The a(18) = 14 integer partitions:
(9,9), (16,2),
(8,8,2), (10,6,2),
(8,4,4,2), (9,3,3,3),
(4,4,4,4,2), (8,4,2,2,2),
(3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2),
(4,4,2,2,2,2,2),
(4,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2).
Cf.
A013922,
A054921,
A095983,
A304714,
A304716,
A305078,
A305079,
A322335,
A322338,
A322387,
A322389,
A322391.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[IntegerPartitions[n],vertConn[#]==1&]],{n,20}]
A327082
BII-numbers of set-systems with cut-connectivity 2.
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 256, 257, 384, 385, 512, 514, 640, 642, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850
Offset: 1
The sequence of all set-systems with cut-connectivity 2 together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
256: {{1,4}}
257: {{1},{1,4}}
384: {{4},{1,4}}
385: {{1},{4},{1,4}}
512: {{2,4}}
514: {{2},{2,4}}
640: {{4},{2,4}}
642: {{2},{4},{2,4}}
The first term involving an edge of size 3 is 832: {{1,2,3},{1,4},{2,4}}.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for spanning edge-connectivity 2 are
A327108.
The cut-connectivity 1 version is
A327098.
The cut-connectivity > 1 version is
A327101.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==2&]
A327336
Number of labeled simple graphs with vertex-connectivity 1.
Original entry on oeis.org
0, 0, 1, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040, 9672967865350359173180572164444160
Offset: 0
The a(2) = 1 through a(4) = 28 edge-sets:
{12} {12,13} {12,13,14}
{12,23} {12,13,24}
{13,23} {12,13,34}
{12,14,23}
{12,14,34}
{12,23,24}
{12,23,34}
{12,24,34}
{13,14,23}
{13,14,24}
{13,23,24}
{13,23,34}
{13,24,34}
{14,23,24}
{14,23,34}
{14,24,34}
{12,13,14,23}
{12,13,14,24}
{12,13,14,34}
{12,13,23,24}
{12,13,23,34}
{12,14,23,24}
{12,14,24,34}
{12,23,24,34}
{13,14,23,34}
{13,14,24,34}
{13,23,24,34}
{14,23,24,34}
Connected non-separable graphs are
A013922.
Set-systems with vertex-connectivity 1 are
A327128.
Labeled simple graphs with cut-connectivity 1 are
A327114.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==1&]],{n,0,4}]
A327101
BII-numbers of 2-cut-connected set-systems (cut-connectivity >= 2).
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1
The sequence of all 2-cut-connected set-systems together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Positions of numbers >= 2 in
A326786.
2-cut-connected graphs are counted by
A013922, if we assume
A013922(2) = 0.
2-cut-connected integer partitions are counted by
A322387.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
BII-numbers for non-spanning edge-connectivity >= 2 are
A327102.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
The labeled cut-connectivity triangle is
A327125, with unlabeled version
A327127.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]
A004115
Number of unlabeled rooted nonseparable graphs with n nodes.
Original entry on oeis.org
0, 1, 1, 4, 22, 178, 2278, 46380, 1578060, 92765486, 9676866173, 1821391854302, 625710416245358, 395761853562201960, 464128290507379386872, 1015085639712281997464676, 4160440039279630394986003604, 32088534920274236421098827156776
Offset: 1
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
\\ See links in A339645 for combinatorial species functions.
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); x*sSolve( sLog( gcr/(x*sv(1)) ), gcr )}
{ my(N=15); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 25 2020
A327112
Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.
Original entry on oeis.org
0, 0, 4, 72, 29856
Offset: 0
Non-isomorphic representatives of the a(3) = 72 set-systems:
{{123}}
{{3}{123}}
{{23}{123}}
{{2}{3}{123}}
{{1}{23}{123}}
{{3}{23}{123}}
{{12}{13}{23}}
{{13}{23}{123}}
{{1}{2}{3}{123}}
{{1}{3}{23}{123}}
{{2}{3}{23}{123}}
{{3}{12}{13}{23}}
{{2}{13}{23}{123}}
{{3}{13}{23}{123}}
{{12}{13}{23}{123}}
{{1}{2}{3}{23}{123}}
{{2}{3}{12}{13}{23}}
{{1}{2}{13}{23}{123}}
{{2}{3}{13}{23}{123}}
{{3}{12}{13}{23}{123}}
{{1}{2}{3}{12}{13}{23}}
{{1}{2}{3}{13}{23}{123}}
{{2}{3}{12}{13}{23}{123}}
{{1}{2}{3}{12}{13}{23}{123}}
Covering 2-cut-connected graphs are
A013922, if we assume
A013922(2) = 1.
Covering 2-cut-connected antichains (blobs) are
A275307, if we assume
A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are
A327113.
2-vertex-connected integer partitions are
A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are
A327101.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]
A317674
Regular triangle where T(n,k) is the number of antichains covering n vertices with k connected components.
Original entry on oeis.org
1, 1, 1, 5, 3, 1, 84, 23, 6, 1, 6348, 470, 65, 10, 1, 7743728, 39598, 1575, 145, 15, 1, 2414572893530, 54354104, 144403, 4095, 280, 21, 1, 56130437190053299918162, 19316801997024, 218033088, 402073, 9100, 490, 28, 1
Offset: 1
Triangle begins:
1
1 1
5 3 1
84 23 6 1
6348 470 65 10 1
7743728 39598 1575 145 15 1
-
blg={1,1,5,84,6348,7743728,2414572893530,56130437190053299918162} (*A048143*);
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[Product[blg[[Length[s]]],{s,spn}],{spn,Select[sps[Range[n]],Length[#]==k&]}],{n,Length[blg]},{k,n}]
A322137
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
Offset: 0
Cf.
A000664,
A002905,
A007718,
A013922,
A054923,
A057500,
A191646,
A275421,
A291842 (planar case),
A322114,
A322115.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1],{2}],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,6}]
-
Connected(v)={my(u=vector(#v));for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1,k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j,2)))))} \\ Andrew Howroyd, Nov 28 2018
A322337
Number of strict 2-edge-connected integer partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 10, 5, 11, 1, 18, 3, 17, 8, 22, 3, 35, 5, 32, 17, 39, 16, 59, 14, 58, 33, 75, 28, 103, 35, 106, 71, 125, 63, 174, 81, 192, 127, 220, 130, 294, 170, 325, 237, 378, 257, 504
Offset: 1
The a(24) = 18 strict 2-edge-connected integer partitions of 24:
(15,9) (10,8,6) (10,8,4,2)
(16,8) (12,8,4) (12,6,4,2)
(18,6) (12,9,3)
(20,4) (14,6,4)
(21,3) (14,8,2)
(22,2) (15,6,3)
(14,10) (16,6,2)
(18,4,2)
(12,10,2)
Cf.
A007718,
A013922,
A054921,
A095983,
A218970,
A275307,
A286518,
A304714,
A304716,
A305078,
A305079,
A322335,
A322336.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}]
A327113
Number of set-systems covering n vertices with cut-connectivity 2.
Original entry on oeis.org
0, 0, 4, 0, 4752
Offset: 0
The a(2) = 4 set-systems:
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
Covering graphs with cut-connectivity >= 2 are
A013922, if we assume
A013922(2) = 1.
Covering antichains (blobs) with cut-connectivity >= 2 are
A275307, if we assume
A275307(1) = 0.
2-vertex-connected integer partitions are
A322387.
Connected covering set-systems are
A323818.
Covering set-systems with cut-connectivity >= 2 are
A327112.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
BII-numbers of set-systems with cut-connectivity 2 are
A327082.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]==2&]],{n,0,3}]
Comments