cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A211347 Numbers n such that n = sigma_k(m) for some k >= 1.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 36, 38, 39, 40, 42, 44, 48, 50, 54, 56, 57, 60, 62, 63, 65, 68, 72, 73, 74, 78, 80, 82, 84, 85, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 122
Offset: 1

Views

Author

Jon Perry, Feb 05 2013

Keywords

Comments

Sigma_k(n) = Sum[d|n, d^k].
Sigma_0(n) can be any positive integer and so is ignored in this sequence.
The asymptotic density of this sequence is 0 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			Sigma_2(4) = 1 + 4 + 16 = 21 so 21 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    upto[n_] := Select[Union@Flatten[{1, DivisorSigma[Range@Max[1,Floor@Log[#,n]], #] & /@ Range[2,n]}], # <= n &]; upto[122] (* Giovanni Resta, Feb 05 2013 *)
  • PARI
    list(lim)=if(lim<3, return(if(lim<1,[],[1]))); my(v=List([1])); for(k=1,logint((lim\=1)-1,2), forfactored(m=2,sqrtnint(lim-1,k), my(t=sigma(m,k)); if(t<=lim, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Apr 09 2022

A057210 Number of fullerenes with 2n vertices (or carbon atoms), counting enantiomorphic pairs as distinct.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 10, 9, 23, 30, 66, 80, 162, 209, 374, 507, 835, 1113, 1778, 2344, 3532, 4670, 6796, 8825, 12501, 16091, 22142, 28232, 38016, 47868, 63416, 79023, 102684, 126973, 162793, 199128, 252082, 306061, 382627, 461020
Offset: 10

Views

Author

N. J. A. Sloane, Aug 28 2003

Keywords

References

  • P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 32.

Crossrefs

Formula

a(n) = (809/1306069401600)*sigma_9(n) + O(n^8) where sigma_9(n) is the ninth divisor power sum, A013957. - Philip Engel, Nov 29 2017

A126833 Ramanujan numbers (A000594) read mod 25.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 0, 12, 20, 18, 5, 10, 7, 21, 24, 16, 5, 21, 11, 20, 24, 0, 17, 12, 17, 11, 10, 22, 21, 22, 18, 0, 7, 11, 2, 20, 10, 5, 15, 5, 10, 5, 12, 7, 17, 18, 10, 24, 16, 23, 19, 5, 22, 10, 22, 11, 0, 10, 22, 24, 5, 5
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A013957, A126832 (mod 5^1), this sequence (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 25]; Array[a, 100] (* Amiram Eldar, Jan 04 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 25; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) == n * sigma_9(n) (mod 25) (Andrews and Berndt, 2012, eq. (5.4.2), p. 98). - Amiram Eldar, Jan 04 2025

A301553 Expansion of Product_{k>=1} (1 + x^k)^(sigma_9(k)).

Original entry on oeis.org

1, 1, 513, 20197, 413669, 12445003, 372981573, 9158438541, 223776496101, 5567873958982, 132009631562091, 3018411978731059, 68171158091244082, 1512439928316217508, 32796174722883608382, 698503712498547606328, 14656105328324700415778, 302787437988353941515934
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Cf. A107742 (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(11 * Pi^(10/11) * (31*Zeta(11))^(1/11) * n^(10/11) / (2^(13/11) * 5^(10/11))) * (155*Zeta(11)/Pi)^(1/22) / (2^(155/264) * sqrt(11) * n^(6/11)).
G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Oct 26 2018

A321813 Sum of 9th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 19684, 1, 1953126, 19684, 40353608, 1, 387440173, 1953126, 2357947692, 19684, 10604499374, 40353608, 38445332184, 1, 118587876498, 387440173, 322687697780, 1953126, 794320419872, 2357947692, 1801152661464, 19684, 3814699218751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=9 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^9 &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321813(n)=sigma(n>>valuation(n,2),9), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321813(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),9)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013957(A000265(n)) = sigma_9(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^9*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(9*e+9)-1)/(p^9-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/20 = Pi^10/1871100 = 0.0500497... . (End)

A068026 Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=9.

Original entry on oeis.org

1, 1023, 29524, 698027, 2441406, 36192156, 47079208, 408345795, 653757313, 2773708938, 2593742460, 26912354924, 11488207654, 51851591352, 77226922344, 222984027123, 125999618778, 848125888467, 340614792100, 1991478050562
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CIP9 = CycleIndexPolynomial[SymmetricGroup[9], Array[x, 9]]; a[n_] := CIP9 /. x[k_] -> DivisorSigma[k, n]; Array[a, 20] (* Jean-François Alcover, Nov 04 2016 *)

Formula

1/9!*(sigma[1](n)^9 + 36*sigma[1](n)^7*sigma[2](n) + 168*sigma[1](n)^6*sigma[3](n) + 378*sigma[1](n)^5*sigma[2](n)^2 + 756*sigma[1](n)^5*sigma[4](n) + 2520*sigma[1](n)^4*sigma[2](n)*sigma[3](n) +
+ 1260*sigma[1](n)^3*sigma[2](n)^3 + 3024*sigma[1](n)^4*sigma[5](n) + 7560*sigma[1](n)^3*sigma[2](n)*sigma[4](n) + 3360*sigma[1](n)^3*sigma[3](n)^2 + 7560*sigma[1](n)^2*sigma[2](n)^2*sigma[3](n) +
+ 945*sigma[1](n)*sigma[2](n)^4 + 10080*sigma[1](n)^3*sigma[6](n) + 18144*sigma[1](n)^2*sigma[2](n)*sigma[5](n) + 15120*sigma[1](n)^2*sigma[3](n)*sigma[4](n) + 11340*sigma[1](n)*sigma[2](n)^2*sigma[4](n) + 10080*sigma[1](n)*sigma[2](n)*sigma[3](n)^2 + 2520*sigma[2](n)^3*sigma[3](n) + 25920*sigma[7](n)*sigma[1](n)^2 +
+ 30240*sigma[1](n)*sigma[2](n)*sigma[6](n) + 24192*sigma[1](n)*sigma[3](n)*sigma[5](n) + 11340*sigma[1](n)*sigma[4](n)^2 + 9072*sigma[2](n)^2*sigma[5](n) + 15120*sigma[2](n)*sigma[3](n)*sigma[4](n) + 2240*sigma[3](n)^3 + 25920*sigma[7](n)*sigma[2](n) + 45360*sigma[8](n)*sigma[1](n) + 20160*sigma[3](n)*sigma[6](n) + 18144*sigma[4](n)*sigma[5](n) + 40320*sigma[9](n)).

A126837 Ramanujan numbers (A000594) read mod 7^2.

Original entry on oeis.org

1, 25, 7, 47, 28, 28, 14, 4, 37, 14, 22, 35, 21, 7, 0, 31, 28, 43, 0, 42, 0, 11, 46, 28, 32, 35, 28, 21, 23, 0, 0, 31, 7, 14, 0, 24, 46, 0, 0, 14, 14, 0, 37, 5, 7, 23, 42, 21, 0, 16, 0, 7, 36, 14, 28, 7, 0, 36, 42, 0, 14, 0, 28, 7, 0, 28, 15, 42, 28, 0, 2, 1, 14, 23, 28, 0, 14, 0, 39, 35, 46
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A013957, A126836 (mod 7^1), this sequence (mod 7^2), A126838 (mod 7^3).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 49]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 49; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) == n * sigma_9(n) (mod 7^2) if Legendre symbol (n,7) = A175629(n) = -1 (Kolberg, 1962). - Amiram Eldar, Jan 05 2025

A279888 a(n) = Sum_{k=1..n-1} sigma_3(k)*sigma_5(n-k).

Original entry on oeis.org

0, 1, 42, 569, 4250, 22006, 88004, 293369, 845358, 2186376, 5145646, 11282966, 23143198, 45179324, 83905292, 150271993, 258816840, 433786483, 704268402, 1119633944, 1733618768, 2640037170, 3931060364, 5777392406, 8325691750, 11873200964, 16643954724, 23133008124
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2016

Keywords

References

  • Jean-Pierre Serre, A Course in Arithmetic, Springer-Verlag, 1973, Chapter VII, Section 4.

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[k == 0, 0, DivisorSigma[3, k]] DivisorSigma[5, n - k], {k, 0, n - 1}], {n, 28}] (* Michael De Vlieger, Dec 22 2016 *)
    a[n_] := (11 * DivisorSigma[9, n] - 21 * DivisorSigma[5, n] + 10 * DivisorSigma[3, n]) / 5040; Array[a, 30] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = {my(f = factor(n)); (11 * sigma(f, 9) - 21 * sigma(f, 5) + 10 * sigma(f, 3)) / 5040;} \\ Amiram Eldar, Jan 07 2025

Formula

a(n) = (11*sigma_9(n)-21*sigma_5(n)+10*sigma_3(n))/5040.

A289745 Coefficients in expansion of -q*E'_10 where E_10 is the Eisenstein Series (A013974).

Original entry on oeis.org

264, 270864, 15589728, 277365792, 2578126320, 15995060928, 74573467584, 284022573120, 920557851048, 2645157604320, 6847480097568, 16379004749184, 36394641851568, 76512377741184, 152243515448640, 290839114879104, 532222389723024, 944492355175248
Offset: 1

Views

Author

Seiichi Manyama, Jul 11 2017

Keywords

Crossrefs

(-1)^(k/2)*q*E'_{k}: A076835 (k=2), A145094 (k=4), A145095 (k=6), A289744 (k=8), this sequence (k=10), A289746 (k=14).

Programs

Formula

a(n) = 264*A282254(n) = 264*n*A013957(n).

A094468 Numbers k such that sum of 9th powers of divisors of k is divisible by the square of Euler-phi of k.

Original entry on oeis.org

1, 2, 3, 6, 14, 42, 3810, 26670, 34162, 41256, 48546, 87096, 102486, 131934, 210482, 288792, 315723, 318990, 430122, 529848, 609672, 631446, 979830, 1023366, 1203960, 1473374, 1683126, 1920699, 2210061, 2241934, 2506086, 2549610
Offset: 1

Views

Author

Labos Elemer, May 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2600000],Divisible[Total[Divisors[#]^9],(EulerPhi[#])^2]&]  (* Harvey P. Dale, Mar 04 2011 *)
  • PARI
    for(n=1,10000000,if(Mod(sigma(n,9),eulerphi(n)^2)==0,print1(n,","))) \\ C. Ronaldo

Formula

A013957(k)/A000010(k)^2 is an integer.

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 18 2005
Previous Showing 11-20 of 25 results. Next