cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 154 results. Next

A289347 Coefficients in expansion of E_6^(3/4).

Original entry on oeis.org

1, -378, -36288, -6664896, -1950813774, -672039262944, -253536117254784, -101485291597998336, -42360328701954544176, -18242860786892766495450, -8049299329628263783504512, -3621056234759774113947852096
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), this sequence (k=9), A289348 (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(3*A288851(n)/4).
a(n) ~ c * exp(2*Pi*n) / n^(7/4), where c = -3^(5/2) * Gamma(1/4)^11 / (2048 * 2^(3/4) * Pi^9) = -0.21604472104032272720247495618663130188448925463945370445... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289348 Coefficients in expansion of E_6^(5/6).

Original entry on oeis.org

1, -420, -31500, -4724160, -1314429900, -440028142344, -162555920654400, -63990327056960640, -26341675849615282380, -11210298679649742846180, -4895195936831699458605912, -2181913188022929464292248640
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), this sequence (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(5/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(5*A288851(n)/6).
a(n) ~ c * exp(2*Pi*n) / n^(11/6), where c = -5 * 3^(1/6) * Gamma(1/4)^(40/3) / (2048*sqrt(2) * Pi^(19/2) * Gamma(1/3)^2) = -0.1571123439957640423587958439875289712533650298096956968521099309872... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289349 Coefficients in expansion of E_6^(11/12).

Original entry on oeis.org

1, -462, -24948, -2518824, -654112074, -212483064024, -76819071738024, -29728723632736128, -12066341379893331300, -5073593348593538950566, -2192302482140061697816872, -968086916154014421082349304, -435126775136273350146250044888
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Comments

In general, for 0 < m < 1, the expansion of (E_6)^m is asymptotic to -m * Gamma(1/4)^(16*m) * 3^(2*m) * exp(2*Pi*n) / (2^(13*m) * Pi^(12*m) * Gamma(1-m) * n^(1+m)). - Vaclav Kotesovec, Mar 05 2018

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), this sequence (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(11/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(11*A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(23/12), where c = -11 * 2^(5/12) * 3^(5/6) * Pi^(11/3) / (128 * Gamma(1/12) * Gamma(3/4)^(44/3)) = -0.08406022472181281739983743854923746657261382508944840919197295490535... - Vaclav Kotesovec, Jul 08 2017

A279892 Eisenstein series E_18(q) (alternate convention E_9(q)), multiplied by 43867.

Original entry on oeis.org

43867, -28728, -3765465144, -3709938631392, -493547047383096, -21917724609403728, -486272786232443616, -6683009405824511424, -64690198594597187640, -479102079577959825624, -2872821917728374840144, -14520482234727711482016, -63736746640768788267744
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2016

Keywords

References

  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), this sequence (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24).
Cf. A282000 (E_4^3*E_6), A282253 (E_6^3).

Programs

  • Mathematica
    terms = 13;
    E18[x_] = 43867 - 28728*Sum[k^17*x^k/(1 - x^k), {k, 1, terms}];
    E18[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

G.f.: 43867 - 28728 * Sum_{i>=1} sigma_17(i)q^i where sigma_17(n) is A013965.
a(n) = 38367*A282000(n) + 5500*A282253(n). - Seiichi Manyama, Feb 11 2017

A279893 Eisenstein series E_22(q) (alternate convention E_11(q)), multiplied by 77683.

Original entry on oeis.org

77683, -552, -1157628456, -5774114968608, -2427722831757864, -263214111328125552, -12109202528761173024, -308317316973972772416, -5091303792066668003880, -60399282006368937251976, -552000263214112485753456, -4084937969230504375869024, -25394838301602325644596256, -136379620048544616772836528, -646588586243917921590531648
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2016

Keywords

References

  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), this sequence (77683*E_22), A029831 (236364091*E_24).
Cf. A282047 (E_4^4*E_6), A282328 (E_4*E_6^3).

Programs

  • Mathematica
    terms = 15;
    E22[x_] = 77683 - 552*Sum[k^21*x^k/(1 - x^k), {k, 1, terms}];
    E22[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

G.f.: 77683 - 552 * Sum_{i>=1} sigma_21(i)q^i where sigma_21(n) is A013969.
a(n) = 57183*A282047(n) + 20500*A282328(n). - Seiichi Manyama, Feb 12 2017

A028594 Expansion of (theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7))^2 in powers of q.

Original entry on oeis.org

1, 4, 12, 16, 28, 24, 48, 4, 60, 52, 72, 48, 112, 56, 12, 96, 124, 72, 156, 80, 168, 16, 144, 96, 240, 124, 168, 160, 28, 120, 288, 128, 252, 192, 216, 24, 364, 152, 240, 224, 360, 168, 48, 176, 336, 312, 288, 192
Offset: 0

Views

Author

Keywords

Comments

Theta series of square of Kleinian lattice Z[ (-1+sqrt(-7))/2 ].
The Gram matrix of the lattice is denoted by A in Parry 1979 on page 163.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 + 4*q + 12*q^2 + 16*q^3 + 28*q^4 + 24*q^5 + 48*q^6 + 4*q^7 + 60*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see p. 467, Entry 5(i).

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(7), 2), 48) [1]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], 4 Sum[ If[ Mod[ d, 7] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^7] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^7])^2, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 4 * sigma( n / 7^valuation( n, 7)))}; /* Michael Somos, Oct 07 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep( [2, 1, 0, 0; 1, 4, 0, 0; 0, 0, 2 ,1 ; 0, 0, 1, 4], n, 1)[n])}; /* Michael Somos, Oct 07 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, d * kronecker( 49, d)))}; /* Michael Somos, Mar 22 2012 */
    
  • Sage
    ModularForms( Gamma0(7), 2, prec=48).0; # Michael Somos, Jun 12 2014
    

Formula

Expansion of (phi(q) * phi(q^7) + 4 * q^2 * psi(q^2) * psi(q^14))^2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jul 21 2012
Expansion of (7 * P(q^7) - P(q)) / 6 where P() is a Ramanujan Eisenstein Series. - Michael Somos, Mar 22 2012
a(n) = 4 * b(n) where b(n) is multiplicative with b(p^e) = 1, if p=7, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 22 2012
G.f.: (theta_3(q) * theta_3(q^7) + theta_2(q) * theta_2(q^7))^2.
G.f.: 1 + 4 * (Sum_{k>0} Kronecker( 49, k) * k * x^k / (1 - x^k)). - Michael Somos, Mar 22 2012
G.f.: 1 + 4 * (Sum_{k>0} x^k / (1 - x^k)^2 - 7 * x^(7*k) / (1 - x^(7*k))^2). - Michael Somos, Mar 22 2012
Convolution square of A002652. a(n) = 4 * A113957(n) unless n=0. - Michael Somos, Jul 21 2012

A037947 Coefficients of unique normalized cusp form Delta_26 of weight 26 for full modular group.

Original entry on oeis.org

1, -48, -195804, -33552128, -741989850, 9398592, 39080597192, 3221114880, -808949403027, 35615512800, 8419515299052, 6569640870912, -81651045335314, -1875868665216, 145284580589400, 1125667983917056, -2519900028948078
Offset: 1

Views

Author

Keywords

Examples

			q^2 - 48*q^4 - ...
		

References

  • G. Harder. "A Congruence Between a Siegel and an Elliptic Modular Form." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 247-262.

Crossrefs

Cf. A000594 ((E_4(q)^3 - E_6(q)^2)/12^3), A004009 (E_4(q)), A013973 (E_6(q)), A290182.

Programs

  • Mathematica
    terms = 17;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];
    ((E4[x]^3 - E6[x]^2)/12^3)*E6[x]*E4[x]^2 + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 27 2018, after Seiichi Manyama *)

Formula

G.f.: (E_4(q)^3 - E_6(q)^2)/12^3 * E_6(q) * E_4(q)^2. - Seiichi Manyama, Jun 09 2017
G.f.: -691*3617/(1728*2*3*5^3*7^2*13) * (E_10(q)*E_16(q) - E_12(q)*E_14(q)). - Seiichi Manyama, Jul 25 2017

A286346 Expansion of eta(q)^24 / eta(q^2)^12 in powers of q.

Original entry on oeis.org

1, -24, 264, -1760, 7944, -25872, 64416, -133056, 253704, -472760, 825264, -1297056, 1938336, -2963664, 4437312, -6091584, 8118024, -11368368, 15653352, -19822176, 24832944, -32826112, 42517728, -51425088, 61903776, -78146664, 98021616, -115331264, 133522752
Offset: 0

Views

Author

Seiichi Manyama, May 08 2017

Keywords

Crossrefs

Cf. A000145, A013973 (E_6).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
    a[n_] := (-1)^n SquaresR[12, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 21 2021 *)
  • PARI
    q = 'q + O('q^50); Vec(eta(q)^24 / eta(q^2)^12) \\ Michel Marcus, Jul 07 2018

Formula

a(n) = (-1)^n * A000145(n).
Euler Transform of [-24, -12, -24, -12, -24, -12, -24, -12, ...]. - Simon Plouffe, Jun 23 2018

A290048 Coefficients in expansion of E_6*Delta^2 where Delta is the generating function of Ramanujan's tau function (A000594).

Original entry on oeis.org

1, -552, 8640, 116000, -4868460, 67855536, -544522240, 2742137280, -8237774250, 10592091400, 3366617856, 113971542048, -1217020425880, 4535746506000, -5415752171520, -19090509870144, 93580817811453, -142801363479240, -80721277168000, 665065363025280
Offset: 2

Views

Author

Seiichi Manyama, Jul 19 2017

Keywords

Crossrefs

Cf. A000594, A010839, A013973 (E_6).
Cf. A282382, A282461 (E_6*E_10*E_14 = E_10^3), A290049, A290050.
E_k*Delta^2: A290178 (k=4), this sequence (k=6), A290180 (k=8), A290181 (k=10), A290182 (k=14).

Programs

  • Mathematica
    terms = 20;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]*QPochhammer[x]^48 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let b(q) be the determinant of the 3 X 3 Hankel matrix [E_6, E_8, E_10 ; E_8, E_10, E_12 ; E_10, E_12, E_14]. G.f. is -691^2*b(q)/(1728^2*250^2).
a(n) = (A290050(n) - 2*691*A290049(n) + 691^2*A282382(n))/(1728^2*250^2).

A008703 Theta series of Niemeier lattice of type A_2^12.

Original entry on oeis.org

1, 72, 194832, 16791264, 397928016, 4629728880, 34417220544, 187488729792, 814885857360, 2975543305704, 9486542953440, 27052984412064, 70486210291392, 169931053729584, 384163615285632
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.

Crossrefs

Programs

  • Mathematica
    terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 5/8 E4[q]^3 + 3/8 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)

Formula

This series is the q-expansion of (5*E_4(z)^3 + 3*E_6(z)^2)/8. - Daniel D. Briggs, Nov 25 2011
Previous Showing 91-100 of 154 results. Next