cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A139180 Smallest number m greater than 1 such that m=(Sum_{i=1..k} d_i!)^n where d_1 d_2 ... d_k is the decimal expansion of m, or 0 if no m exists.

Original entry on oeis.org

2, 172603687936, 3910825640696988096, 396867211295273131775761, 13586030059671762261567625351, 4218282992523473247642107344280879104, 5572272365289149102816175194628254483025277
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 22 2008

Keywords

Comments

A139181(n)=A139180(n)^(1/n).

Examples

			172603687936=(1!+7!+2!+6!+0!+3!+6!+8!+7!+9!+3!+6!)^2
		

Crossrefs

A173574 4-Factorions: equal to the sum of the quadruple factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 49
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2010

Keywords

Examples

			49 -> 4!!!! + 9!!!! = 4 + 9*5 = 4 +45 = 49.
		

Crossrefs

Programs

  • Maple
    P:=proc(n,m) local a,b,i,j,k,x,w; for i from 1 by 1 to n do a:=0; b:=0; w:=0; k:=i; while k>0 do w:=k-(trunc(k/10)*10); j:=w; x:=w-m; if w=0 then b:=1; else while x>0 do j:=j*x; x:=x-m; od; b:=j; fi; a:=a+b; k:=trunc(k/10); od; if a=i then lprint(i,a); fi; od; end: P(1000,4);
  • Mathematica
    qfd[n_]:=Times@@Range[n,1,-4]; Select[Range[50],Total[qfd/@ IntegerDigits[ #]] == #&] (* Harvey P. Dale, Dec 15 2018 *)

A173575 5-Factorions: equal to the sum of the quintuple factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 39
Offset: 1

Views

Author

Keywords

Examples

			39 -> 3!!!!! + 9!!!!! = 3 + 9*4 = 3 + 36 = 39.
		

Crossrefs

Programs

  • Maple
    P:=proc(n,m) local a,b,i,j,k,x,w; for i from 1 by 1 to n do a:=0; b:=0; w:=0; k:=i; while k>0 do w:=k-(trunc(k/10)*10); j:=w; x:=w-m; if w=0 then b:=1; else while x>0 do j:=j*x; x:=x-m; od; b:=j; fi; a:=a+b; k:=trunc(k/10); od; if a=i then lprint(i,a); fi; od; end: P(1000,5);

A173576 6-Factorions: equal to the sum of the 6-ple factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 29
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2010

Keywords

Examples

			29 -> 2!!!!!! + 9!!!!!! = 2 + 9*3 = 2 + 27 = 29.
		

Crossrefs

Programs

  • Maple
    P:=proc(n,m) local a,b,i,j,k,x,w; for i from 1 by 1 to n do a:=0; b:=0; w:=0; k:=i; while k>0 do w:=k-(trunc(k/10)*10); j:=w; x:=w-m; if w=0 then b:=1; else while x>0 do j:=j*x; x:=x-m; od; b:=j; fi; a:=a+b; k:=trunc(k/10); od; if a=i then lprint(i,a); fi; od; end: P(1000,6);

A188284 Finite sequence of numbers n such that iterations for the map r -> A061602(r) starting with n ends with the same number n.

Original entry on oeis.org

1, 2, 145, 169, 871, 872, 1454, 40585, 45361, 45362, 363601
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2011

Keywords

Comments

See A173447 = the number of iterations for the map r -> A061602(r), A061602 = sum of factorials of the digits of n.
Superset of A014080 (factorions).

Examples

			Number 169 is in sequence because 169 -> 363601 -> 1454 -> 169.
		

Crossrefs

A303935 Size of orbit of n under repeated application of sum of factorial of digits of n.

Original entry on oeis.org

2, 1, 1, 16, 8, 10, 15, 32, 36, 35, 2, 2, 17, 33, 13, 10, 15, 32, 36, 35, 17, 17, 9, 37, 7, 12, 6, 8, 33, 31, 33, 33, 37, 18, 34, 31, 48, 39, 24, 8, 13, 13, 7, 34, 30, 54, 42, 39, 29, 52, 10, 10, 12, 31, 54, 10, 24, 21, 41, 24, 15, 15, 6, 48, 42, 24, 12, 42
Offset: 0

Views

Author

Philippe Guglielmetti, May 03 2018

Keywords

Comments

Numbers n for which a(n)=1 are called factorions (A014080).
Apart from factorions, only 3 cycles exist:
169 -> 363601 -> 1454 -> 169, so a(169) = a(363601) = a(1454) = 3.
871 -> 45361 -> 871, so a(871) = a(45361) = 2.
872 -> 45362 -> 872, so a(872) = a(45362) = 2.
All other n produce a chain reaching either a factorion or a cycle.

Examples

			For n = 4, 4!=24, 2!+4!=26, 2!+6!=722, 7!+2!+2!=5044, 5!+0!+4!+4!=169, 1!+6!+9!=363601, 3!+6!+3!+6!+0!+1!=1454, then 1!+4!+5!+4!=169 which already belongs to the chain, so a(4) = length of [4, 24, 26, 722, 5044, 169, 363601, 1454] = 8.
		

Crossrefs

Cf. A061602, A014080 (contains n for which a(n) = 1).

Programs

  • Mathematica
    Array[Length@ NestWhileList[Total@ Factorial@ IntegerDigits@ # &, #, UnsameQ, All, 100, -1] &, 68, 0] (* Michael De Vlieger, May 10 2018 *)
  • PARI
    f(n) = if (!n, n=1); my(d=digits(n)); sum(k=1, #d~, d[k]!);
    a(n) = {my(v = [n], vs = Set(v)); for (k=1, oo, new = f(n); if (vecsearch(vs, new), return (#vs)); v = concat(v, new); vs = Set(v); n = new;);} \\ Michel Marcus, May 18 2018
  • Python
    for n in count(0):
        l=[]
        i=n
        while i not in l:
            l.append(i)
            i=sum(map(factorial,map(int,str(i))))
        print(n,len(l))
    

A101698 Numbers n such that n = d_1*d_1!+d_2*d_2!+...+d_k*d_k!, where d_1 d_2 ... d_k is the decimal expansion of n.

Original entry on oeis.org

0, 1, 684817, 3371797
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 18 2004

Keywords

Examples

			3371797 is in the sequence because 3371797 = 3*3!+3*3!+7*7!+1*1!+7*7!+9*9!+7*7!.
		

Crossrefs

Programs

  • Mathematica
    Do[If[n==Apply[Plus, IntegerDigits[n]*IntegerDigits[n]! ], Print[n]], {n, 26000000}]

A163576 Near-factorions: equal to the sum of the factorials of all but one of their digits in base 10.

Original entry on oeis.org

24, 5761, 5762
Offset: 1

Views

Author

Berend Jan van der Zwaag (b.j.vanderzwaag(AT)utwente.nl), Jul 31 2009

Keywords

Examples

			24 = 4!, 5761 = 7! + 6! + 1!, 5762 = 7! + 6! + 2!
		

References

  • Clifford A. Pickover, "Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning", Oxford University Press, 2003, p. 357.

Crossrefs

Cf. A014080.

Programs

  • MATLAB
    f = factorial(0:9); n = 0; for m = 1:2177280, d = f(mod(floor(m*10.^(-floor(log10(m)):0)),10)+1); if any(sum(d)-d==m), n = n+1; a(n) = m; end, end

A247227 Numbers that divide the sum of the factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 56, 71, 93, 145, 219, 758, 768, 7584, 7684, 9696, 10081, 21993, 40585
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2014

Keywords

Comments

Numbers n such that n divides A061602(n).
Finite sequence with 23 terms.
Subsequence of numbers n such that A061602(n) >= n. The largest such number is 1999999.
Sequence of values A061602(a(n)) / a(n): 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 19099, 15, 71, 3902, 1, 1657, 60, 60, 6, 6, 75, 4, 33, 1.
Supersequence of A014080 (whose terms are the numbers n such that A061602(n) / n = 1).

Examples

			19 is in the sequence because 19 divides 1! + 9! = 1 + 362880 = 362881; 362881 / 19 = 19099.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2000000] | &+[ Factorial(d): d in Intseq(n)] mod n eq 0]
    
  • Mathematica
    Select[Range[50000], Mod[Plus @@ Factorial[IntegerDigits[#]], #] == 0 &] (* Michael De Vlieger, Dec 26 2014 *)
  • PARI
    for(k=1,10^5,d=digits(k);s=sum(i=1,#d,d[i]!);if(!(s%k),print1(k,", "))) \\ Derek Orr, Dec 30 2014

A345405 Integers k such that k = (d1)_c + (d2)_c + ... + (dc)_c, where (d)_c denotes the descending factorial of d, c is the length of k and di is the i-th digit of k in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 86, 15960
Offset: 1

Views

Author

Andrzej Kukla, Jun 18 2021

Keywords

Comments

The descending factorial (d)_c is defined as d*(d-1)*(d-2)*...*(d-c+1).

Examples

			(8)_2 + (6)_2 = 8*7 + 6*5 = 56 + 30 = 86, therefore 86 is in the list.
		

Crossrefs

Cf. A014080 (factorions), A068424 (descending factorials), A345406.

Programs

  • Mathematica
    q[n_] := Module[{dig = IntegerDigits[n], nd}, nd = Length[dig]; Sum[d!/(d - nd)!, {d, dig}] == n]; Select[Range[0, 16000], q] (* Amiram Eldar, Jun 18 2021 *)
Previous Showing 11-20 of 28 results. Next