cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A033265 Number of i such that d(i) >= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4
Offset: 1

Views

Author

Keywords

Examples

			The base-2 representation of n=4 is 100 with d(0)=0, d(1)=0, d(2)=1. There are two rise-or-equal, one from d(0) to d(1) and one from d(1) to d(2), so a(4)=2. - _R. J. Mathar_, Oct 16 2015
		

Crossrefs

Programs

  • Maple
    A033265 := proc(n)
        a := 0 ;
        dgs := convert(n,base,2);
        for i from 2 to nops(dgs) do
            if op(i,dgs)>=op(i-1,dgs) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 16 2015
  • PARI
    A033265(n) = { my(i=0); while(n>1, if((n%4)!=1, i++); n >>= 1); (i); }; \\ Antti Karttunen, Aug 06 2023

Formula

From Ralf Stephan, Oct 05 2003: (Start)
a(0) = 0, a(2n) = a(n) + 1, a(2n+1) = a(n) + [n odd].
a(n) = A014081(n) + A023416(n).
G.f.: 1/(1-x) * Sum_{k>=0} (t^2 + t^3 + t^4)/((1+t)*(1+t^2)), t=x^2^k. (End)
a(n) = -1 + A297113(A005940(1+n)). - Antti Karttunen, Dec 30 2017

Extensions

Sign in Name corrected by R. J. Mathar, Oct 16 2015

A245196 Write n>=1 as either n=2^k-2^r with 0 <= r <= k-1, in which case a(2^k-2^r)=wt(k-r-1), or as n=2^k-2^r+j with 2 <= r <= k-1, 1 <= j < 2^r-1, in which case a(2^k-2^r+j)=a(j)*wt(k-r-1) (where wt(i) = A000120(i)).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jul 25 2014

Keywords

Comments

Other sequences defined by a recurrence of this class (see the Formula and Maple sections) include A245180, A245195, A048896, A245536, A038374.

Examples

			May be arranged into blocks of lengths 1,2,4,8,...:
0,
0, 1,
0, 0, 1, 1,
0, 0, 0, 0, 1, 0, 1, 2,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 0, 1, 2,
...
		

Crossrefs

Programs

  • Maple
    Maple code for this sequence:
    wt := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
    G:=[seq(wt(n),n=0..30)];
    m:=1;
    f:=proc(n) option remember; global m,G; local k,r,j,np;
       k:=1+floor(log[2](n)); np:=2^k-n;
       if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;
       if j=0 then G[k-r]; else m*G[k-r]*f(j); fi;
    end;
    [seq(f(n),n=1..120)];
    # Maple code for the general recurrence:
    G:=[seq(wt(n),n=0..30)]; # replace this by a list G=[G(0), G(1), G(2), ...], remembering that you have to tell Maple G[1] to get G(0), G[2] to get G(1), etc.
    m:=1; # replace this by the correct multiplier
    f:=proc(n) option remember; global m,G; local k,r,j,np;
       k:=1+floor(log[2](n)); np:=2^k-n;
       if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;
       if j=0 then G[k-r-1+1]; else m*G[k-r-1+1]*f(j); fi;
    end;
    [seq(f(n),n=1..120)];
    # If G(n) = wt(n) and m=1 we get the present sequence
    # If G(n) = A083424(n) and m=1 we get A245537
    # If G(n) = A083424(n) and m=2 we get A245538
    # If G(n) = A083424(n) and m=4 we get A245539
    # If G(n) = A083424(n) and m=8 we get A245180 (and presumably A160239)
    # If G(n) = n (n>=0) and m=1 we get A245536
    # If G(n) = n+1 (n>=0) and m=1 we get A038374
    # If G(n) = (n+1)(n+2)/2 (n>=0) and m=1 we get A245541
    # If G(n) = (n+1)(n+2)/2 (n>=0) and m=2 we get A245547
    # If G(n) = 2^n (n>=0) and m=1 we get A245195 (= 2^A014081)
    # If G(n) = 2^n (n>=0) and m=2 we get A048896

Formula

This is an example of a class of sequences defined by the following recurrence.
We first choose a sequence G = [G(0), G(1), G(2), G(3), ...], which are the terms that will appear at the ends of the blocks: a(2^k-1) = G(k-1), and we also choose a parameter m (the "multiplier"). Then the recurrence (this defines a(1), a(2), a(3), ...) is:
a(2^k-2^r)=G(k-r-1) if 0 <= r <= k-1, a(2^k-2^r+j)=m*a(j)*G(k-r-1) if 2 <= r <= k-1, 1 <= j < 2^r-1.
To help apply the recurrence, here are the values of k,r,j for the first few values of n (if n=2^k-2^r we set j=0, although it is not used):
n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k: 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4
r: 0 1 0 2 2 1 0 3 3 3 3 2 2 1 0
j: 0 0 0 0 1 0 0 0 1 2 3 0 1 0 0
--------------------------------------------------
n: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
k: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
r: 4 4 4 4 4 4 4 4 3 3 3 3 2 2 1 0
j: 0 1 2 3 4 5 6 7 0 1 2 3 0 1 0 0
--------------------------------------------------
In the present example G(n) = wt(n) and m=1.

A092339 Number of adjacent identical digits in the binary representation of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 1, 2, 3, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 4, 3, 2, 3, 2, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 3, 4, 5, 5, 4, 3, 4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 3, 2
Offset: 0

Views

Author

Ralf Stephan, Mar 18 2004

Keywords

Comments

In binary: number of 00 blocks plus number of 11 blocks. (Note: the blocks can overlap. See the example below.)

Examples

			60 in binary is 111100, it has 4 blocks of adjacent digits, so a(60)=4.
Equally, 60's binary Gray code expansion is A003188(60)=34, 100010 in binary, which contains four zeros.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 84.

Crossrefs

Cf. A005811.

Programs

  • PARI
    a(n)=local(v); v=binary(n); sum(k=1, length(v)-1, v[k]==v[k+1])
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+(n>0&&(n/2)%2==0),a((n-1)/2)+((n-1)/2)%2))
    
  • Scheme
    (define (A092339 n) (A080791 (A003188 n))) ;; Antti Karttunen, Jul 05 2013

Formula

Recurrence: a(2n) = a(n) + [n even], a(2n+1) = a(n) + [n odd].
a(n) = A014081(n) + A056973(n).
For n>0, A227185(n) = a(n)+1.
a(n) = A080791(A003188(n)) [because the sequence gives the number of nonleading zeros in binary Gray code expansion of n] - Antti Karttunen, Jul 05 2013

A384715 a(n) = Sum_{k=0..n} (binomial(n, k) mod 4).

Original entry on oeis.org

1, 2, 4, 8, 4, 8, 12, 16, 4, 8, 12, 24, 12, 24, 24, 32, 4, 8, 12, 24, 12, 24, 32, 48, 12, 24, 32, 48, 24, 48, 48, 64, 4, 8, 12, 24, 12, 24, 32, 48, 12, 24, 32, 64, 32, 64, 64, 96, 12, 24, 32, 48, 32, 64, 64, 96, 24, 48, 64, 96, 48, 96, 96, 128, 4, 8, 12, 24
Offset: 0

Views

Author

David Radcliffe, Jun 23 2025

Keywords

Comments

This is a 2-automatic sequence.

Examples

			Let b(n) be the binary expansion of n. Then a(n) = (1 + p10 + p11) * 2^c, where c is the number of set bits in b(n), p10 is the number of '10' patterns in b(n), and p11 is 1 or 0 depending on whether the pattern '11' is occurring in b(n) or not. This formula is used by _Chai Wah Wu_ in the Python function below. For instance:
  n = 25 -> b(n) = 11001 -> a(n) = (1+1+1) * 2^3 = 24.
  n = 26 -> b(n) = 11010 -> a(n) = (1+2+1) * 2^3 = 32.
  n = 27 -> b(n) = 11011 -> a(n) = (1+1+1) * 2^4 = 48.
- _Peter Luschny_, Jun 25 2025
		

Crossrefs

Cf. A001316, A014081, A033264, A051638 (mod 3 analog), A085357. Row sums of triangle A034931.

Programs

  • Mathematica
    A384715[n_] := 2^DigitSum[n, 2]*(StringCount[IntegerString[n, 2], "10"] - Boole[BitAnd[n,2*n] == 0] + 2);
    Array[A384715, 100, 0] (* Paolo Xausa, Jun 26 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)%4); \\ Michel Marcus, Jun 25 2025
  • Python
    def A001316(n): return (1 + (n % 2)) * A001316(n // 2) if n else 1
    def A033264(n): return (n % 4 == 2) + A033264(n // 2) if n else 0
    def A085357(n): return int(n & (n<<1) == 0)
    def A384715(n): return A001316(n) * (A033264(n) - A085357(n) + 2)
    
  • Python
    def A384715(n): return (((n>>1)&~n).bit_count()+bool(n&(n<<1))+1)<Chai Wah Wu, Jun 25 2025
    
  • Python
    def a(n: int) -> int:  # after Chai Wah Wu
        b = bin(n)[2:]; p = b.count("10"); q = b.count("11")
        return (p + (2 if q else 1)) * 2**n.bit_count()  # Peter Luschny, Jun 25 2025
    

Formula

a(n) = A001316(n) * (A033264(n) - A085357(n) + 2) for n > 0.
Recurrences:
a(4n) = a(2n),
a(4n+1) = 2a(2n),
a(8n+2) = a(4n+2) + 2a(2n) - a(2n+1),
a(8n+3) = a(4n+3) + 4a(2n) - 4a(n),
a(8n+6) = a(4n+3) + 2a(4n+2) - 2a(2n+1),
a(8n+7) = 2a(4n+3).

A328607 Numbers whose reversed binary expansion, without the most significant digit, is a necklace.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 26, 28, 30, 31, 32, 48, 52, 56, 58, 60, 62, 63, 64, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 192, 200, 208, 212, 216, 220, 224, 228, 232, 234, 236, 240, 244, 246, 248, 250, 252, 254, 255
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

Offset is 0 to be consistent with A257250.
A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
    0:        0 ~ {}
    1:        1 ~ {1}
    2:       10 ~ {2}
    3:       11 ~ {1,2}
    4:      100 ~ {3}
    6:      110 ~ {2,3}
    7:      111 ~ {1,2,3}
    8:     1000 ~ {4}
   12:     1100 ~ {3,4}
   14:     1110 ~ {2,3,4}
   15:     1111 ~ {1,2,3,4}
   16:    10000 ~ {5}
   24:    11000 ~ {4,5}
   26:    11010 ~ {2,4,5}
   28:    11100 ~ {3,4,5}
   30:    11110 ~ {2,3,4,5}
   31:    11111 ~ {1,2,3,4,5}
   32:   100000 ~ {6}
   48:   110000 ~ {5,6}
   52:   110100 ~ {3,5,6}
		

Crossrefs

The dual non-reversed version is A257250.
The dual non-reversed version involving all digits is A065609.
The version involving all digits is A328595.
The non-reversed version is A328668.
Binary necklaces are A000031.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[0,100],#<=1||neckQ[Reverse[Rest[IntegerDigits[#,2]]]]&]

A328668 Numbers whose binary expansion, without the most significant digit, is a necklace.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 15, 16, 17, 19, 21, 23, 31, 32, 33, 35, 37, 39, 43, 47, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79, 85, 87, 91, 95, 127, 128, 129, 131, 133, 135, 137, 139, 141, 143, 147, 149, 151, 155, 157, 159, 171, 175, 183, 191, 255, 256, 257
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2019

Keywords

Comments

Offset is 0 to be consistent with A257250.
A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   0:       0 ~ {}
   1:       1 ~ {1}
   2:      10 ~ {2}
   3:      11 ~ {1,2}
   4:     100 ~ {3}
   5:     101 ~ {1,3}
   7:     111 ~ {1,2,3}
   8:    1000 ~ {4}
   9:    1001 ~ {1,4}
  11:    1011 ~ {1,2,4}
  15:    1111 ~ {1,2,3,4}
  16:   10000 ~ {5}
  17:   10001 ~ {1,5}
  19:   10011 ~ {1,2,5}
  21:   10101 ~ {1,3,5}
  23:   10111 ~ {1,2,3,5}
  31:   11111 ~ {1,2,3,4,5}
  32:  100000 ~ {6}
  33:  100001 ~ {1,6}
  35:  100011 ~ {1,2,6}
		

Crossrefs

The dual version is A257250.
The version involving all digits, taken in reverse, is A328595.
The reversed version is A328607.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[0,100],#<=1||neckQ[Rest[IntegerDigits[#,2]]]&]

A056973 Number of blocks of {0,0} in the binary expansion of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 3, 2, 2, 2, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 5, 4, 3, 3, 3, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 3, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a056973 = f 0 where
       f y x = if x == 0 then y else f (y + 0 ^ (mod x 4)) $ div x 2
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Maple
    f:= proc(n) option remember;
         if n mod 4 = 0 then 1 + procname(n/2)
         else procname(floor(n/2))
         fi
    end proc:
    f(1):= 0:
    map(f, [$1..200]); # Robert Israel, Sep 02 2015
  • Mathematica
    f[n_] := Count[Partition[IntegerDigits[n, 2], 2, 1], {0, 0}]; Table[f@ n, {n, 0, 102}] (* Michael De Vlieger, Sep 01 2015, after Robert G. Wilson v at A014081 *)
    SequenceCount[#,{0,0},Overlaps->True]&/@(IntegerDigits[#,2]&/@Range[0,120]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 24 2018 *)
  • PARI
    a(n) = { my(x = bitor(n, n>>1));
             if (x == 0, 0, 1 + logint(x, 2) - hammingweight(x)) }
    vector(102, i, a(i))  \\ Gheorghe Coserea, Sep 01 2015

Formula

a(2n) = a(n) + [n is even], a(2n+1) = a(n).
G.f.: 1/(1-x) * Sum_{k>=0} t^4/((1+t)*(1+t^2)) where t=x^(2^k). - Ralf Stephan, Sep 10 2003
a(n) = A023416(n) - A033264(n). - Ralf Stephan, Sep 10 2003
Sum_{n>=1} a(n)/(n*(n+1)) = 2 - 3*log(2)/2 - Pi/4 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021

A239906 Let cn(n,k) denote the number of times 11..1 (k 1's) appears in the binary representation of n; a(n) = n - cn(n,1) + cn(n,2) - cn(n,3).

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 5, 5, 7, 7, 8, 9, 11, 11, 12, 12, 15, 15, 16, 17, 18, 18, 20, 20, 23, 23, 24, 25, 26, 26, 27, 27, 31, 31, 32, 33, 34, 34, 36, 36, 38, 38, 39, 40, 42, 42, 43, 43, 47, 47, 48, 49, 50, 50, 52, 52, 54, 54, 55, 56, 57, 57, 58, 58, 63, 63, 64, 65, 66, 66, 68, 68, 70, 70, 71, 72, 74, 74
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2014

Keywords

Crossrefs

Programs

  • Maple
    # From A014081:
    cn := proc(v, k) local n, s, nn, i, j, som, kk;
    som := 0;
    kk := convert(cat(seq(1, j = 1 .. k)), string);
    n := convert(v, binary);
    s := convert(n, string);
    nn := length(s);
    for i to nn - k + 1 do
    if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
    som; end;
    [seq(n-cn(n,1)+cn(n,2)-cn(n,3), n=0..100)];
  • Mathematica
    cn[n_, k_] := Count[Partition[IntegerDigits[n, 2], k, 1], Table[1, {k}]]; Table[n - Sum[cn[n, i], {i, 1, 3, 2}] + cn[n, 2], {n, 0, 77}] (* Michael De Vlieger, Sep 18 2015 *)
  • PARI
    a(n) = {
        my(x = bitand(n, n>>1), wt = k->hammingweight(k));
        n - wt(n) + wt(x) - wt(bitand(x, n>>2));
    };
    vector(78, i, a(i-1))  \\ Gheorghe Coserea, Sep 24 2015

A239907 Let cn(n,k) denote the number of times 11..1 (k 1's) appears in the binary representation of n; a(n) = n - cn(n,1) + cn(n,2) - cn(n,3) + cn(n,4) - ... .

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 5, 5, 7, 7, 8, 9, 11, 11, 12, 13, 15, 15, 16, 17, 18, 18, 20, 20, 23, 23, 24, 25, 26, 26, 28, 28, 31, 31, 32, 33, 34, 34, 36, 36, 38, 38, 39, 40, 42, 42, 43, 44, 47, 47, 48, 49, 50, 50, 52, 52, 54, 54, 55, 56, 58, 58, 59, 60, 63, 63, 64, 65, 66, 66, 68, 68, 70, 70, 71, 72, 74, 74, 75
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2014

Keywords

Crossrefs

Programs

  • Maple
    # From A014081:
    cn := proc(v, k) local n, s, nn, i, j, som, kk;
    som := 0;
    kk := convert(cat(seq(1, j = 1 .. k)), string);
    n := convert(v, binary);
    s := convert(n, string);
    nn := length(s);
    for i to nn - k + 1 do
    if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
    som; end;
    g:=n->add((-1)^i*cn(n,i),i=1..10); # assumes n < 1023
    [seq(n+g(n), n=0..100)];
  • Mathematica
    cn[n_, k_] := Count[Partition[IntegerDigits[n, 2], k, 1], Table[1, {k}]]; Table[n - Sum[cn[n, i], {i, 1, IntegerLength[n, 2], 2}] + Sum[cn[n, i], {i, 2, IntegerLength[n, 2], 2}], {n, 0, 78}] (* Michael De Vlieger, Sep 18 2015 *)
  • PARI
    binruns(n) = {
      if (n == 0, return([1, 0]));
      my(bag = List(), v=0);
      while(n != 0,
            v = valuation(n,2); listput(bag, v); n >>= v; n++;
            v = valuation(n,2); listput(bag, v); n >>= v; n--);
      return(Vec(bag));
    };
    a(n) = {
      my(v = binruns(n));
      n - sum(i = 1, #v, if (i%2 == 0, (v[i] + 1)\2, 0))
    };
    vector(79, i, a(i-1))  \\ Gheorghe Coserea, Sep 18 2015

Formula

Conjecture: a(n) = n - A329320(n) for n >= 0 (noticed by Sequence Machine). - Mikhail Kurkov, Oct 13 2021

A126306 a(n) = number of double-rises (UU-subsequences) in the n-th Dyck path encoded by A014486(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Examples

			A014486(20) = 228 (11100100 in binary), encodes the following Dyck path:
    /\
   /..\/\
  /......\
and there is one rising (left-hand side) slope with length 3 and one with length 1, so in the first slope, consisting of 3 U-steps, there are two cases with two consecutive U-steps (overlapping is allowed), thus a(20)=2.
		

Crossrefs

Programs

  • Python
    def ok(n):
        if n==0: return True
        B=bin(n)[2:] if n!=0 else '0'
        s=0
        for b in B:
            s+=1 if b=='1' else -1
            if s<0: return False
        return s==0
    def a014081(n): return sum(((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1))
    print([a014081(n) for n in range(4001) if ok(n)]) # Indranil Ghosh, Jun 13 2017

Formula

a(n) = A014081(A014486(n)).
a(n) = A000120(A048735(A014486(n))).
a(A125976(n)) = A057514(n)-1, for all n >= 1.
Previous Showing 21-30 of 42 results. Next