cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A098470 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 5th column from the center.

Original entry on oeis.org

1, 6, 28, 112, 414, 1452, 4917, 16236, 52624, 168168, 531531, 1665456, 5182008, 16031952, 49366674, 151419816, 462919401, 1411306358, 4292487562, 13029127584, 39478598170, 119439969220, 360881425710, 1089126806040
Offset: 5

Views

Author

Eric W. Weisstein, Sep 09 2004

Keywords

Crossrefs

Programs

  • Maple
    # Assuming offset 0:
    a := n -> simplify(GegenbauerC(n, -n-5, -1/2)):
    seq(a(n), n=0..25); # Peter Luschny, May 09 2016
  • Mathematica
    Table[GegenbauerC[n, -n - 5, -1/2], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
  • PARI
    x='x + O('x^50); Vec(32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5)) \\ G. C. Greubel, Feb 28 2017

Formula

(n^2-25)*a(n) = n*(2*n-1)*a(n-1) + 3*n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 18 2004
G.f.: 32*x^5/(sqrt((1+x)*(1-3*x))*(1-x-sqrt((1+x)*(1-3*x)))^5). - Vladeta Jovovic, Sep 18 2004
a(n) = A111808(n,n-5). - Reinhard Zumkeller, Aug 17 2005
Assuming offset 0: a(n) = GegenbauerC(n,-n-5,-1/2) and a(n) = binomial(10+2*n,n)* hypergeom([-n, -n-10], [-9/2-n], 1/4). - Peter Luschny, May 09 2016
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 09 2021

A098521 E.g.f. exp(x)*BesselI(2,2*sqrt(2)*x)/2.

Original entry on oeis.org

0, 0, 1, 3, 14, 50, 195, 721, 2716, 10116, 37845, 141295, 528330, 1975766, 7395479, 27698685, 103821240, 389410568, 1461605481, 5489516955, 20630539910, 77579118330, 291893775019, 1098848179561, 4138773239892, 15596070165900, 58797332264125, 221762856917511, 836756771788098
Offset: 0

Views

Author

Paul Barry, Sep 12 2004

Keywords

Comments

Binomial transform of e.g.f. BesselI(2,2*sqrt(2)*x)/2, or {0,0,1,0,8,0,60,0,448,0,3360,...} with g.f. ((1-4*x^2)-sqrt(1-8*x^2))/(8*x^2*sqrt(1-8*x^2)).

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); [0,0] cat Coefficients(R!((1-2*x-3*x^2-(1-x)*Sqrt(1-2*x-7*x^2))/(8*x^2*Sqrt(1-2*x-7*x^2)))); // G. C. Greubel, Aug 17 2018
  • Mathematica
    CoefficientList[Series[(1-2*x-3*x^2-(1-x)*Sqrt[1-2*x-7*x^2]) / (8*x^2*Sqrt[1-2*x-7*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 28 2012 *)
  • PARI
    x='x+O('x^66); concat([0,0],Vec((1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^2*sqrt(1-2*x-7*x^2)))) \\ Joerg Arndt, May 11 2013
    

Formula

G.f.: (1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^2*sqrt(1-2*x-7*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+2)*2^k.
Conjecture: (n+2)*a(n) -(4n+3)*a(n-1) -3*(2n+1)*a(n-2) +(20n-29)*a(n-3) +21*(n-3)*a(n-4)=0. - R. J. Mathar, Dec 08 2011
Shorter recurrence (for n>=3): (n-2)*(n+2)*a(n) = n*(2*n-1)*a(n-1) + 7*(n-1)*n*a(n-2). - Vaclav Kotesovec, Dec 28 2012
a(n) ~ sqrt(8+2*sqrt(2))*(1+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Dec 28 2012

A375248 Expansion of (1 - x)/(1 - 2*x - 3*x^2)^(7/2).

Original entry on oeis.org

1, 6, 35, 168, 756, 3192, 12936, 50688, 193479, 722722, 2651649, 9581936, 34176324, 120526056, 420852204, 1456709328, 5002984791, 17062825626, 57827993685, 194871361608, 653285629920, 2179701604080, 7241015510820, 23958512912880, 78978801164445
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2024

Keywords

Crossrefs

First differences of A374506.

Programs

  • Mathematica
    a[n_]:=(1+n)(2+n)(3+n)(4+n)(5+n)Hypergeometric2F1[(1-n)/2,-n/2,3,4]/120; Array[a,25,0] (* Stefano Spezia, Aug 07 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-x)/(1-2*x-3*x^2)^(7/2))

Formula

a(n) = (binomial(n+5,3)/10) * Sum_{k=0..floor(n/2)} binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = (binomial(n+5,3)/10) * A014531(n+1).
a(n) = ((n+5)/(n*(n+4))) * ((2*n+3)*a(n-1) + 3*(n+4)*a(n-2)).
a(n) = (1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*hypergeom([(1-n)/2, -n/2], [3], 4)/120. - Stefano Spezia, Aug 07 2024

A114576 Triangle read by rows: T(n,k) is number of Motzkin paths of length n having k UH's, where U=(1,1), H=(1,0) (0<=k<=floor(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 1, 6, 3, 11, 10, 23, 26, 2, 47, 70, 10, 102, 176, 45, 221, 449, 160, 5, 493, 1121, 539, 35, 1105, 2817, 1680, 196, 2516, 7031, 5082, 868, 14, 5763, 17604, 14856, 3486, 126, 13328, 43996, 42660, 12810, 840, 30995, 110147, 120338, 44640, 4410, 42
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 0 yields A090344. Sum(k*T(n,k),k=0..floor(n/3))=A014531(n-2).

Examples

			T(4,1)=3 because we have H(UH)D, (UH)DH and (UH)HD, where U=(1,1), H=(1,0), D=(1,-1) (the UH's are shown between parentheses).
Triangle begins:
1;
1;
2;
3,1;
6,3;
11,10;
23,26,2;
47,70,10;
		

Crossrefs

Programs

  • Maple
    G:=(1-z-sqrt(1-2*z-3*z^2-4*z^3*t+4*z^3))/2/z^2/(1-z+t*z): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=[1-z-sqrt(1-2z-3z^2-4tz^3+4z^3)]/[2(1-z+tz)z^2].
Previous Showing 11-14 of 14 results.