A091538 Triangle built from m-primes as columns.
1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0
Examples
From _Michael De Vlieger_, May 24 2017: (Start) Chart a(n,m) read by antidiagonals: n | m -> ------------------------------------------------ 0 | 1 0 0 0 0 0 0 ... (A000007) 1 | 2 3 5 7 11 13 17 (A000040) 2 | 4 6 9 10 14 15 21 (A001358) 3 | 8 12 18 20 27 28 30 (A014612) 4 | 16 24 36 40 54 56 60 (A014613) 5 | 32 48 72 80 108 112 120 (A014614) 6 | 64 96 144 160 216 224 240 (A046306) 7 | 128 192 288 320 432 448 480 (A046308) 8 | 256 384 576 640 864 896 960 (A046310) ... Triangle begins: 0 | 1 1 | 0 2 2 | 0 3 4 3 | 0 5 6 8 4 | 0 7 9 12 16 5 | 0 11 10 18 24 32 6 | 0 13 14 20 36 48 64 7 | 0 17 15 27 40 72 96 128 8 | 0 19 21 28 54 80 144 192 256 ... (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Wolfdieter Lang, First 11 rows.
Crossrefs
Programs
-
Mathematica
With[{nn = 11}, Function[s, Function[t, Table[Function[m, If[m == 1, Boole[k == 1], t[[m, k]]]][n - k + 1], {n, nn}, {k, n, 1, -1}]]@ Map[Position[s, #][[All, 1]] &, Range[0, nn]]]@ PrimeOmega@ Range[2^nn]] (* or *) a = {1}; Do[Block[{r = {Prime@ n}}, Do[AppendTo[r, SelectFirst[ Range[a[[-(n - i)]] + 1, 2^n], PrimeOmega@ # == i &]], {i, 2, n - 1}]; a = Join[a, {0}, If[n == 1, {}, r], {2^n}]], {n, 11}]; a (* Michael De Vlieger, May 24 2017 *)
-
Python
from math import isqrt, comb, prod from sympy import prime, primerange, integer_nthroot, primepi def A091538(n): a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1)) r = n-comb(a,2) w = a-r if r==0: return int(w==1) if r==1: return prime(w) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(w+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,r))) return bisection(f,w,w) # Chai Wah Wu, Jun 11 2025
Formula
For n>=m>=1: a(n, m)= (n-m+1)-th member in the strictly monotonically increasing sequence of numbers N satisfying: N=product(p(k)^(e_k), k=1..) with p(k) := A000040(k) (k-th prime) such that sum(e_k, k=1..) = m, where the e_k are nonnegative. if m=0 : a(n, 0)=1 if n=0 else 0. If n
A124282 Primes indexed by 4-almost primes.
53, 89, 151, 173, 251, 263, 281, 419, 433, 457, 463, 541, 569, 701, 743, 761, 769, 809, 863, 881, 911, 1097, 1129, 1193, 1213, 1249, 1291, 1373, 1427, 1439, 1459, 1481, 1571, 1583, 1657, 1783, 1931, 1949, 1951, 2017, 2029, 2087, 2203, 2213, 2287, 2297
Offset: 1
Comments
4-almost primes indexed by primes = A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040,A001358] at n.
Examples
a(1) = prime(4almostprime(1)) = prime(16) = 53. a(2) = prime(4almostprime(2)) = prime(24) = 89. a(3) = prime(4almostprime(3)) = prime(36) = 151.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
A124283 4-almost primes indexed by primes.
24, 36, 54, 60, 90, 104, 136, 150, 189, 225, 232, 294, 308, 328, 344, 375, 441, 459, 488, 510, 516, 550, 570, 621, 676, 708, 714, 738, 748, 776, 852, 860, 884, 910, 999, 1014, 1060, 1096, 1112, 1161, 1197, 1206, 1256, 1274, 1284, 1290, 1356, 1432, 1450, 1482
Offset: 1
Comments
Primes indexed by 4-almost primes = A124282. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040,A001358] at n.
Examples
a(1) = 4almostprime(prime(1)) = 4almostprime(2) = 24. a(2) = 4almostprime(prime(2)) = 4almostprime(3) = 36. a(3) = 4almostprime(prime(3)) = 4almostprime(5) = 54.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Python
from math import isqrt from sympy import prime, primepi, integer_nthroot, primerange def A124283(n): def f(x): return int(prime(n)+x-sum(primepi(x//(k*m*r))-c for a, k in enumerate(primerange(integer_nthroot(x, 4)[0]+1)) for b, m in enumerate(primerange(k, integer_nthroot(x//k, 3)[0]+1), a) for c, r in enumerate(primerange(m, isqrt(x//(k*m))+1), b))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024
Extensions
a(17)-a(50) from Giovanni Resta, Jun 13 2016
A111344 Pierpont 4-almost primes: numbers with exactly 4 prime divisors, not necessarily distinct, of the form 2^K*3^L + 1.
513, 13825, 32769, 59050, 110593, 157465, 177148, 186625, 262145, 279937, 497665, 1259713, 1327105, 2097153, 2125765, 2519425, 4718593, 4782970, 5668705, 6718465, 17915905, 18874369, 22674817, 33554433, 38263753, 56623105
Offset: 1
Keywords
Examples
a(1) = 513 = (2^9)*(3^0)+1 = 3 * 3 * 3 * 19. a(2) = 13825 = (2^9)*(3^3)+1 = 5 * 5 * 7 * 79. a(3) = 32769 = (2^15)*(3^0)+1 = 3 * 3 * 11 * 331. a(4) = 59050 = (2^0)*(3^10)+1 = 2 * 5 * 5 * 1181. a(10) = 279937 = (2^7)*(3^7)+1 = 7 * 7 * 29 * 197 (lots of sevens). a(24) = 33554433 = (2^25)*(3^0) = 3 * 11 * 251 * 4051. a(60) = 31381059610 = (2^0)*(3^22)+1 = 2 * 5 * 5501 * 570461. a(168) = 16677181699666570 = (2^0)*(3^34)+1 = 2 * 5 * 956353 * 1743831169.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..2500
- Eric Weisstein's World of Mathematics, Pierpont Prime
- Eric Weisstein's World of Mathematics, Almost Prime
Crossrefs
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.
Programs
-
PARI
is(n)=bigomega(n)==4 && n-1 == 2^valuation(n-1,2)*3^valuation(n-1,3) \\ Charles R Greathouse IV, Feb 01 2017
-
PARI
list(lim)=my(v=List(),L=lim\1-1); for(e=0,logint(L,3), my(t=3^e); while(t<=L, if(bigomega(t+1)==4, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017
Extensions
Extended by Ray Chandler, Nov 08 2005
Name edited by Charles R Greathouse IV, Feb 01 2017
A376704 4-brilliant numbers: numbers which are the product of four primes having the same number of decimal digits.
16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 14641, 17303, 20449, 22627, 24167, 25289, 26741, 28561, 29887, 30613, 31603, 34969, 35321, 36179
Offset: 1
Examples
35321 is a term because 35321 = 11 * 13 * 13 * 19, and these four prime factors have the same number of digits.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Dario Alpern, 4-Brilliant Numbers.
Programs
-
Mathematica
A376704Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 4 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1]; Select[Range[40000], A376704Q] (* or *) dlist4[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 4]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *) Flatten[Array[dlist4, 2]]
A046317 Odd numbers divisible by exactly 4 primes (counted with multiplicity).
81, 135, 189, 225, 297, 315, 351, 375, 441, 459, 495, 513, 525, 585, 621, 625, 693, 735, 765, 783, 819, 825, 837, 855, 875, 975, 999, 1029, 1035, 1071, 1089, 1107, 1155, 1161, 1197, 1225, 1269, 1275, 1287, 1305, 1365, 1375, 1395, 1425, 1431, 1449, 1521
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Crossrefs
Cf. A014613.
Programs
-
Mathematica
Select[Range[1,1601,2],PrimeOmega[#]==4&] (* Harvey P. Dale, Aug 15 2014 *)
Extensions
Offset corrected by Zak Seidov, May 03 2020
A086046 Sum of first n 4-almost primes.
16, 40, 76, 116, 170, 226, 286, 367, 451, 539, 629, 729, 833, 959, 1091, 1226, 1362, 1502, 1652, 1804, 1960, 2144, 2333, 2529, 2727, 2931, 3141, 3361, 3586, 3814, 4046, 4280, 4528, 4778, 5038, 5314, 5608, 5904, 6201, 6507, 6815, 7130, 7458, 7788, 8128
Offset: 1
Comments
Elements in this sequence can themselves be 4-almost primes. a(1) = 16 = 2^4. a(2) = 40 = 2^3 * 5. a(19) = 1652 = 2^2 * 7 * 59. a(20) = 1804 = 2^2 * 11 * 41. a(31) = 4046 = 2 * 7 * 17^2. a(37) = 5608 = 2^3 * 701. a(39) = 6201 = 3^2 * 13 * 53. a(40) = 6507 = 3^3 * 241. a(42) = 7130 = 2 * 5 * 23 * 31. a(43) = 7458 = 2 * 3 * 11 * 113. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004
Examples
a(2)=40 because sum of first two 4-almost primes i.e. 16+24 is 40.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Accumulate[Select[Range[1000],PrimeOmega[#]==4&]] (* Harvey P. Dale, Feb 07 2014 *)
Formula
a(n) = sum_{i=1..n} A014613(i). - R. J. Mathar, Sep 14 2012
A046330 Palindromes with exactly 4 prime factors (counted with multiplicity).
88, 232, 414, 424, 444, 484, 525, 585, 636, 666, 676, 686, 808, 858, 868, 999, 1881, 2002, 2332, 2442, 2662, 3003, 3663, 3773, 3993, 4114, 4444, 4774, 5005, 5115, 5225, 6116, 6556, 6666, 7007, 7227, 8668, 9999, 10101, 10701, 11011, 12321, 13431
Offset: 1
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[14000],PalindromeQ[#]&&PrimeOmega[#]==4&] (* Harvey P. Dale, Jul 07 2024 *)
A114435 Indices of 4-almost prime triangular numbers.
8, 16, 20, 23, 26, 36, 40, 45, 49, 50, 51, 53, 59, 60, 62, 65, 68, 69, 74, 76, 77, 83, 88, 89, 91, 92, 100, 103, 105, 110, 114, 115, 117, 123, 126, 129, 131, 136, 139, 146, 149, 150, 151, 154, 156, 165, 169, 182, 185, 186, 187, 194, 196, 197, 198, 206, 210
Offset: 1
Examples
a(1) = 8 because T(8) = TriangularNumber(8) = 8*(8+1)/2 = 36 = 2^2 * 3^2 is a 4-almost prime. a(2) = 16 because T(16) = 16*(16+1)/2 = 136 = 2^3 * 17 is a 4-almost prime. a(3) = 20 because T(20) = 20*(20+1)/2 = 210 = 2 * 3 * 5 * 7 (210 = primorial 4#). a(4) = 23 because T(23) = 23*(23+1)/2 = 276 = 2^2 * 3 * 23. a(5) = 26 because T(26) = 26*(26+1)/2 = 351 = 3^3 * 13. a(6) = 36 because T(36) = 36*(36+1)/2 = 666 = 2 * 3^2 * 37. a(27) = 100 because T(100) = 100*(100+1)/2 = 5050 = 2 * 5^2 * 101. a(57) = 210 because T(210) = 210*(210+1)/2 = 22155 = 3 * 5 * 7 * 211 (again, 210 = primorial 4#).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Triangular Number.
- Eric Weisstein's World of Mathematics, Almost Prime.
Programs
-
Mathematica
Flatten[Position[Accumulate[Range[800]], ?(PrimeOmega[#]== 4 &)]] (* _Vincenzo Librandi, Apr 09 2014 *)
-
PARI
is(n)=my(t=bigomega(n/gcd(n,2))); if(t<3, bigomega((n+1)/gcd(n+1,2))+t==4, t==3 && isprime((n+1)/gcd(n+1,2))) \\ Charles R Greathouse IV, Jun 14 2017
A124941 Numbers k such that k and k+4 are 4-almost primes.
36, 56, 84, 100, 132, 136, 152, 228, 340, 344, 372, 376, 472, 484, 488, 532, 546, 564, 568, 580, 621, 632, 686, 708, 770, 804, 808, 820, 846, 852, 856, 868, 872, 950, 1012, 1192, 1204, 1206, 1208, 1274, 1304, 1326, 1336, 1444, 1524, 1550, 1572, 1576, 1690
Offset: 1
Keywords
Examples
36=2^2*3^2, 40=2^3*5; 56=2^3*7, 60=2^2*3*5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1690], PrimeOmega[#]==PrimeOmega[#+4]==4 &] (* James C. McMahon, Dec 07 2024 *)
-
PARI
isok(n) = (bigomega(n) == 4) && (bigomega(n+4) == 4); \\ Michel Marcus, Oct 11 2013
Comments