cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 144 results. Next

A091538 Triangle built from m-primes as columns.

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

m-primes (also called m-almost primes) are the numbers which have precisely m prime factors counting multiple factors. 1 is included as 0-prime.
The number N>=1 appears in column no. m = A001222(N).

Examples

			From _Michael De Vlieger_, May 24 2017: (Start)
Chart a(n,m) read by antidiagonals:
  n | m ->
  ------------------------------------------------
  0 |    1     0     0     0     0     0     0 ... (A000007)
  1 |    2     3     5     7    11    13    17     (A000040)
  2 |    4     6     9    10    14    15    21     (A001358)
  3 |    8    12    18    20    27    28    30     (A014612)
  4 |   16    24    36    40    54    56    60     (A014613)
  5 |   32    48    72    80   108   112   120     (A014614)
  6 |   64    96   144   160   216   224   240     (A046306)
  7 |  128   192   288   320   432   448   480     (A046308)
  8 |  256   384   576   640   864   896   960     (A046310)
       ...
Triangle begins:
  0 |    1
  1 |    0    2
  2 |    0    3    4
  3 |    0    5    6    8
  4 |    0    7    9   12   16
  5 |    0   11   10   18   24   32
  6 |    0   13   14   20   36   48    64
  7 |    0   17   15   27   40   72    96   128
  8 |    0   19   21   28   54   80   144   192   256
       ...
(End)
		

Crossrefs

The column sequences (without leading zeros) are: A000007, A000040 (primes), A001358, A014612-4, A046306, A046308, A046310, A046312, A046314, A069272-A069281 for m=0..20, respectively.
A078840 is this table with the zeros omitted.

Programs

  • Mathematica
    With[{nn = 11}, Function[s, Function[t, Table[Function[m, If[m == 1, Boole[k == 1], t[[m, k]]]][n - k + 1], {n, nn}, {k, n, 1, -1}]]@ Map[Position[s, #][[All, 1]] &, Range[0, nn]]]@ PrimeOmega@ Range[2^nn]] (* or *)
    a = {1}; Do[Block[{r = {Prime@ n}}, Do[AppendTo[r, SelectFirst[ Range[a[[-(n - i)]] + 1, 2^n], PrimeOmega@ # == i &]], {i, 2, n - 1}]; a = Join[a, {0}, If[n == 1, {}, r], {2^n}]], {n, 11}]; a (* Michael De Vlieger, May 24 2017 *)
  • Python
    from math import isqrt, comb, prod
    from sympy import prime, primerange, integer_nthroot, primepi
    def A091538(n):
        a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1))
        r = n-comb(a,2)
        w = a-r
        if r==0: return int(w==1)
        if r==1: return prime(w)
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(w+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,r)))
        return bisection(f,w,w) # Chai Wah Wu, Jun 11 2025

Formula

For n>=m>=1: a(n, m)= (n-m+1)-th member in the strictly monotonically increasing sequence of numbers N satisfying: N=product(p(k)^(e_k), k=1..) with p(k) := A000040(k) (k-th prime) such that sum(e_k, k=1..) = m, where the e_k are nonnegative. if m=0 : a(n, 0)=1 if n=0 else 0. If n

A124282 Primes indexed by 4-almost primes.

Original entry on oeis.org

53, 89, 151, 173, 251, 263, 281, 419, 433, 457, 463, 541, 569, 701, 743, 761, 769, 809, 863, 881, 911, 1097, 1129, 1193, 1213, 1249, 1291, 1373, 1427, 1439, 1459, 1481, 1571, 1583, 1657, 1783, 1931, 1949, 1951, 2017, 2029, 2087, 2203, 2213, 2287, 2297
Offset: 1

Author

Jonathan Vos Post, Oct 24 2006

Keywords

Comments

4-almost primes indexed by primes = A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040,A001358] at n.

Examples

			a(1) = prime(4almostprime(1)) = prime(16) = 53.
a(2) = prime(4almostprime(2)) = prime(24) = 89.
a(3) = prime(4almostprime(3)) = prime(36) = 151.
		

Formula

a(n) = prime(4almostprime(n)) = A000040(A014613(n)). {p such that p is prime and omega(primepi(p)) = 4} = {p such that p is in A000040 and A001222(A000720(p)) = 4}.

A124283 4-almost primes indexed by primes.

Original entry on oeis.org

24, 36, 54, 60, 90, 104, 136, 150, 189, 225, 232, 294, 308, 328, 344, 375, 441, 459, 488, 510, 516, 550, 570, 621, 676, 708, 714, 738, 748, 776, 852, 860, 884, 910, 999, 1014, 1060, 1096, 1112, 1161, 1197, 1206, 1256, 1274, 1284, 1290, 1356, 1432, 1450, 1482
Offset: 1

Author

Jonathan Vos Post, Oct 24 2006

Keywords

Comments

Primes indexed by 4-almost primes = A124282. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040,A001358] at n.

Examples

			a(1) = 4almostprime(prime(1)) = 4almostprime(2) = 24.
a(2) = 4almostprime(prime(2)) = 4almostprime(3) = 36.
a(3) = 4almostprime(prime(3)) = 4almostprime(5) = 54.
		

Programs

  • Python
    from math import isqrt
    from sympy import prime, primepi, integer_nthroot, primerange
    def A124283(n):
        def f(x): return int(prime(n)+x-sum(primepi(x//(k*m*r))-c for a, k in enumerate(primerange(integer_nthroot(x, 4)[0]+1)) for b, m in enumerate(primerange(k, integer_nthroot(x//k, 3)[0]+1), a) for c, r in enumerate(primerange(m, isqrt(x//(k*m))+1), b)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024

Formula

a(n) = 4almostprime(prime(n)) = A014613(A000040(n)).

Extensions

a(17)-a(50) from Giovanni Resta, Jun 13 2016

A111344 Pierpont 4-almost primes: numbers with exactly 4 prime divisors, not necessarily distinct, of the form 2^K*3^L + 1.

Original entry on oeis.org

513, 13825, 32769, 59050, 110593, 157465, 177148, 186625, 262145, 279937, 497665, 1259713, 1327105, 2097153, 2125765, 2519425, 4718593, 4782970, 5668705, 6718465, 17915905, 18874369, 22674817, 33554433, 38263753, 56623105
Offset: 1

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 513 = (2^9)*(3^0)+1 = 3 * 3 * 3 * 19.
a(2) = 13825 = (2^9)*(3^3)+1 = 5 * 5 * 7 * 79.
a(3) = 32769 = (2^15)*(3^0)+1 = 3 * 3 * 11 * 331.
a(4) = 59050 = (2^0)*(3^10)+1 = 2 * 5 * 5 * 1181.
a(10) = 279937 = (2^7)*(3^7)+1 = 7 * 7 * 29 * 197 (lots of sevens).
a(24) = 33554433 = (2^25)*(3^0) = 3 * 11 * 251 * 4051.
a(60) = 31381059610 = (2^0)*(3^22)+1 = 2 * 5 * 5501 * 570461.
a(168) = 16677181699666570 = (2^0)*(3^34)+1 = 2 * 5 * 956353 * 1743831169.
		

Crossrefs

Intersection of A014613 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    is(n)=bigomega(n)==4 && n-1 == 2^valuation(n-1,2)*3^valuation(n-1,3) \\ Charles R Greathouse IV, Feb 01 2017
    
  • PARI
    list(lim)=my(v=List(),L=lim\1-1); for(e=0,logint(L,3), my(t=3^e); while(t<=L, if(bigomega(t+1)==4, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Extended by Ray Chandler, Nov 08 2005
Name edited by Charles R Greathouse IV, Feb 01 2017

A376704 4-brilliant numbers: numbers which are the product of four primes having the same number of decimal digits.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 14641, 17303, 20449, 22627, 24167, 25289, 26741, 28561, 29887, 30613, 31603, 34969, 35321, 36179
Offset: 1

Author

Paolo Xausa, Oct 02 2024

Keywords

Examples

			35321 is a term because 35321 = 11 * 13 * 13 * 19, and these four prime factors have the same number of digits.
		

Crossrefs

Subsequence of A014613.

Programs

  • Mathematica
    A376704Q[k_] := With[{f = FactorInteger[k]}, Total[f[[All, 2]]] == 4 && Length[Union[IntegerLength[f[[All, 1]]]]] == 1];
    Select[Range[40000], A376704Q] (* or *)
    dlist4[d_] := Sort[Times @@@ DeleteDuplicates[Map[Sort, Tuples[Prime[Range[PrimePi[10^(d-1)] + 1, PrimePi[10^d]]], 4]]]]; (* Generates terms with d-digits prime factors -- faster but memory intensive *)
    Flatten[Array[dlist4, 2]]

A046317 Odd numbers divisible by exactly 4 primes (counted with multiplicity).

Original entry on oeis.org

81, 135, 189, 225, 297, 315, 351, 375, 441, 459, 495, 513, 525, 585, 621, 625, 693, 735, 765, 783, 819, 825, 837, 855, 875, 975, 999, 1029, 1035, 1071, 1089, 1107, 1155, 1161, 1197, 1225, 1269, 1275, 1287, 1305, 1365, 1375, 1395, 1425, 1431, 1449, 1521
Offset: 1

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A014613.

Programs

  • Mathematica
    Select[Range[1,1601,2],PrimeOmega[#]==4&] (* Harvey P. Dale, Aug 15 2014 *)

Extensions

Offset corrected by Zak Seidov, May 03 2020

A086046 Sum of first n 4-almost primes.

Original entry on oeis.org

16, 40, 76, 116, 170, 226, 286, 367, 451, 539, 629, 729, 833, 959, 1091, 1226, 1362, 1502, 1652, 1804, 1960, 2144, 2333, 2529, 2727, 2931, 3141, 3361, 3586, 3814, 4046, 4280, 4528, 4778, 5038, 5314, 5608, 5904, 6201, 6507, 6815, 7130, 7458, 7788, 8128
Offset: 1

Author

Shyam Sunder Gupta, Aug 24 2003

Keywords

Comments

Elements in this sequence can themselves be 4-almost primes. a(1) = 16 = 2^4. a(2) = 40 = 2^3 * 5. a(19) = 1652 = 2^2 * 7 * 59. a(20) = 1804 = 2^2 * 11 * 41. a(31) = 4046 = 2 * 7 * 17^2. a(37) = 5608 = 2^3 * 701. a(39) = 6201 = 3^2 * 13 * 53. a(40) = 6507 = 3^3 * 241. a(42) = 7130 = 2 * 5 * 23 * 31. a(43) = 7458 = 2 * 3 * 11 * 113. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004

Examples

			a(2)=40 because sum of first two 4-almost primes i.e. 16+24 is 40.
		

Programs

  • Mathematica
    Accumulate[Select[Range[1000],PrimeOmega[#]==4&]] (* Harvey P. Dale, Feb 07 2014 *)

Formula

a(n) = sum_{i=1..n} A014613(i). - R. J. Mathar, Sep 14 2012

A046330 Palindromes with exactly 4 prime factors (counted with multiplicity).

Original entry on oeis.org

88, 232, 414, 424, 444, 484, 525, 585, 636, 666, 676, 686, 808, 858, 868, 999, 1881, 2002, 2332, 2442, 2662, 3003, 3663, 3773, 3993, 4114, 4444, 4774, 5005, 5115, 5225, 6116, 6556, 6666, 7007, 7227, 8668, 9999, 10101, 10701, 11011, 12321, 13431
Offset: 1

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[14000],PalindromeQ[#]&&PrimeOmega[#]==4&] (* Harvey P. Dale, Jul 07 2024 *)

A114435 Indices of 4-almost prime triangular numbers.

Original entry on oeis.org

8, 16, 20, 23, 26, 36, 40, 45, 49, 50, 51, 53, 59, 60, 62, 65, 68, 69, 74, 76, 77, 83, 88, 89, 91, 92, 100, 103, 105, 110, 114, 115, 117, 123, 126, 129, 131, 136, 139, 146, 149, 150, 151, 154, 156, 165, 169, 182, 185, 186, 187, 194, 196, 197, 198, 206, 210
Offset: 1

Author

Jonathan Vos Post, Feb 13 2006

Keywords

Examples

			a(1) = 8 because T(8) = TriangularNumber(8) = 8*(8+1)/2 = 36 = 2^2 * 3^2 is a 4-almost prime.
a(2) = 16 because T(16) = 16*(16+1)/2 = 136 = 2^3 * 17 is a 4-almost prime.
a(3) = 20 because T(20) = 20*(20+1)/2 = 210 = 2 * 3 * 5 * 7 (210 = primorial 4#).
a(4) = 23 because T(23) = 23*(23+1)/2 = 276 = 2^2 * 3 * 23.
a(5) = 26 because T(26) = 26*(26+1)/2 = 351 = 3^3 * 13.
a(6) = 36 because T(36) = 36*(36+1)/2 = 666 = 2 * 3^2 * 37.
a(27) = 100 because T(100) = 100*(100+1)/2 = 5050 = 2 * 5^2 * 101.
a(57) = 210 because T(210) = 210*(210+1)/2 = 22155 = 3 * 5 * 7 * 211 (again, 210 = primorial 4#).
		

Crossrefs

Programs

Formula

{a(n)} = {k such that A001222(A000217(k)) = 4}. {a(n)} = {k such that k*(k+1)/2 has exactly 4 prime factors, with multiplicity}. {a(n)} = {k such that A000217(k) is an element of A014613}.
{ m : A069904(m) = 4 }. - Alois P. Heinz, Aug 05 2019

A124941 Numbers k such that k and k+4 are 4-almost primes.

Original entry on oeis.org

36, 56, 84, 100, 132, 136, 152, 228, 340, 344, 372, 376, 472, 484, 488, 532, 546, 564, 568, 580, 621, 632, 686, 708, 770, 804, 808, 820, 846, 852, 856, 868, 872, 950, 1012, 1192, 1204, 1206, 1208, 1274, 1304, 1326, 1336, 1444, 1524, 1550, 1572, 1576, 1690
Offset: 1

Author

Zak Seidov, Nov 13 2006

Keywords

Examples

			36=2^2*3^2, 40=2^3*5; 56=2^3*7, 60=2^2*3*5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1690], PrimeOmega[#]==PrimeOmega[#+4]==4 &] (* James C. McMahon, Dec 07 2024 *)
  • PARI
    isok(n) = (bigomega(n) == 4) && (bigomega(n+4) == 4); \\ Michel Marcus, Oct 11 2013
Previous Showing 61-70 of 144 results. Next